CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4228-4237.DOI: 10.11949/0438-1157.20200504
• Surface and interface engineering • Previous Articles Next Articles
Zhenkang LIN1(),Yaoxuan QIAO1,Wei WANG1,Hong YUAN2,3,Cheng FAN1(),Kening SUN1
Received:
2020-05-07
Revised:
2020-06-30
Online:
2020-09-05
Published:
2020-09-05
Contact:
Cheng FAN
林振康1(),乔耀璇1,王伟1,袁洪2,3,樊铖1(),孙克宁1
通讯作者:
樊铖
作者简介:
林振康(1997—),男,硕士研究生,CLC Number:
Zhenkang LIN, Yaoxuan QIAO, Wei WANG, Hong YUAN, Cheng FAN, Kening SUN. Morphology prediction of lithium plating by finite element modeling and simulations based on non-linear kinetics[J]. CIESC Journal, 2020, 71(9): 4228-4237.
林振康, 乔耀璇, 王伟, 袁洪, 樊铖, 孙克宁. 基于非线性动力学的锂沉积形貌模拟与预测[J]. 化工学报, 2020, 71(9): 4228-4237.
Add to citation manager EndNote|Ris|BibTeX
模型参数 | 数值 |
---|---|
温度T0 | 298 K |
电解液中Li+初始浓度c0 | 500 mol·m-3 |
电解液中Li+扩散系数De | 10-9~10-11 m2·s-1 [ |
交换电流密度i0 | 10~103 A·m-2 [ |
阴极传递系数α | 0.5 |
阳极传递系数β | 0.5 |
极板间距d | 18×10-6 m |
晶核曲率半径r | 2×10-6 m |
晶核高度h | 4×10-6 m |
Table 1 Parameters in the model
模型参数 | 数值 |
---|---|
温度T0 | 298 K |
电解液中Li+初始浓度c0 | 500 mol·m-3 |
电解液中Li+扩散系数De | 10-9~10-11 m2·s-1 [ |
交换电流密度i0 | 10~103 A·m-2 [ |
阴极传递系数α | 0.5 |
阳极传递系数β | 0.5 |
极板间距d | 18×10-6 m |
晶核曲率半径r | 2×10-6 m |
晶核高度h | 4×10-6 m |
1 | Li M, Lu J, Chen Z, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018, 30(33): 1800561. |
2 | Schmuch R, Wagner R, Hörpel G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278. |
3 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
4 | Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537. |
5 | Steiger J, Kramer D, Mönig R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium[J]. Journal of Power Sources, 2014, 261: 112-119. |
6 | Steiger J, Kramer D, Mönig R. Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution[J]. Electrochimica Acta, 2014, 136: 529-536. |
7 | Park M S, Ma S B, Lee D J, et al. A highly reversible lithium metal anode[J]. Scientific Reports, 2014, 4: 3815. |
8 | Aryanfar A, Brooks D J, Colussi A J, et al. Thermal relaxation of lithium dendrites[J]. Physical Chemistry Chemical Physics, 2015, 17(12): 8000-8005. |
9 | Aryanfar A, Brooks D, Merinov B V, et al. Dynamics of lithium dendrite growth and inhibition: pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1721-1726. |
10 | Ely D R, Jana A, García R E. Phase field kinetics of lithium electrodeposits[J]. Journal of Power Sources, 2014, 272: 581-594. |
11 | Chen L, Zhang H W, Liang L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385. |
12 | Shen X, Zhang R, Chen X, et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020, 10(10): 1903645. |
13 | 张睿, 沈馨, 王金福, 等. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695. |
Zhang R, Shen X, Wang J F, et al. Plating of Li ions in 3D structured lithium metal anodes[J]. CIESC Journal, 2020, 71(6): 2688-2695 | |
14 | Zhang R, Shen X, Cheng X B, et al. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation?[J]. Energy Storage Materials, 2019, 23: 556-565. |
15 | Yang Q, Li W, Dong C, et al. PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries[J]. Journal of Energy Chemistry, 2020, 42: 83-90. |
16 | Ma Y, Dong C, Yang Q, et al. Investigation of polysulfone film on high-performance anode with stabilized electrolyte/electrode interface for lithium batteries[J]. Journal of Energy Chemistry, 2020, 42: 49-55. |
17 | Tan J, Tartakovsky A M, Ferris K, et al. Investigating the effects of anisotropic mass transport on dendrite growth in high energy density lithium batteries[J]. Journal of the Electrochemical Society, 2016, 163(2): A318-A327. |
18 | Mayers M Z, Kaminski J W, Miller T F. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J]. The Journal of Physical Chemistry C, 2012, 116(50): 26214-26221. |
19 | Zhang X Q, Chen X, Cheng X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angewandte Chemie International Edition, 2018, 57(19): 5301-5305. |
20 | 陈钰, 牟天成. 低共熔溶剂在电池和电催化中的应用[J]. 化工学报, 2020, 71(1): 106-121. |
Chen Y, Mu T C. Application of deep eutectic solvents in battery and electrocatalysis[J]. CIESC Journal, 2020, 71(1): 106-121. | |
21 | Xu K, von Cresce A, Lee U. Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface[J]. Langmuir, 2010, 26(13): 11538-11543. |
22 | Barai P, Higa K, Srinivasan V. Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study[J]. Journal of the Electrochemical Society, 2017, 164(2): A180-A189. |
23 | Mogi R, Inaba M, Iriyama Y, et al. In situ atomic force microscopy study on lithium deposition on nickel substrates at elevated temperatures[J]. Journal of the Electrochemical Society, 2002, 149(4): A385-A390. |
24 | Byrne P, Fontes E, Parhammar O, et al. A simulation of the tertiary current density distribution from a chlorate cell(I): Mathematical model[J]. Journal of the Electrochemical Society, 2001, 148(10): D125-D132. |
25 | Pérez T, Nava J L. Numerical simulation of the primary, secondary and tertiary current distributions on the cathode of a rotating cylinder electrode cell: influence of using plates and a concentric cylinder as counter electrodes[J]. Journal of Electroanalytical Chemistry, 2014, 719: 106-112. |
26 | Kim G S, Merchant T, D’Urso J, et al. Systematic study of surface chemistry and comprehensive two-dimensional tertiary current distribution model for copper electrochemical deposition[J]. Journal of the Electrochemical Society, 2006, 153(11): C761-C772. |
27 | Suresh R, Rengaswamy R. Modeling and control of battery systems(I): Revisiting Butler-Volmer equations to model non-linear coupling of various capacity fade mechanisms[J]. Computers & Chemical Engineering, 2018, 119: 336-351. |
28 | Sokirko A V, Bark F H. Diffusion-migration transport in a system with Butler-Volmer kinetics, an exact solution[J]. Electrochimica Acta, 1995, 40(12): 1983-1996. |
29 | Pei A, Zheng G, Shi F, et al. Nanoscale nucleation and growth of electrodeposited lithium metal[J]. Nano Letters, 2017, 17(2): 1132-1139. |
30 | Dreyer W, Guhlke C, Müller R. A new perspective on the electron transfer: recovering the Butler-Volmer equation in non-equilibrium thermodynamics[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 24966-24983. |
31 | Liu W, Lin D, Pei A, et al. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement[J]. Journal of the American Chemical Society, 2016, 138(47): 15443-15450. |
32 | Liu C, Liu L. Optimal design of Li-ion batteries through multi-physics modeling and multi-objective optimization[J]. Journal of the Electrochemical Society, 2017, 164(11): E3254-E3264. |
33 | Lin X, Park J, Liu L, et al. A comprehensive capacity fade model and analysis for Li-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(10): A1701-A1710. |
34 | Bonino F, Scrosati B, Selvaggi A, et al. Electrode processes at the lithium-polymer electrolyte interface[J]. Journal of Power Sources, 1986, 18(1): 75-81. |
35 | Hughes M, Karunathilaka S, Hampson N A, et al. The faradaic impedance of the lithium-sulphur dioxide system. A kinetic interpretation[J]. Journal of Applied Electrochemistry, 1982, 12(5): 537-543. |
36 | Kim S P, van Duin A C T, Shenoy V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: a molecular dynamics study[J]. Journal of Power Sources, 2011, 196(20): 8590-8597. |
37 | Yan J, Xia B J, Su Y C, et al. Phenomenologically modeling the formation and evolution of the solid electrolyte interface on the graphite electrode for lithium-ion batteries[J]. Electrochimica Acta, 2008, 53(24): 7069-7078. |
38 | Borodin O, Smith G D, Fan P. Molecular dynamics simulations of lithium alkyl carbonates[J]. The Journal of Physical Chemistry B, 2006, 110(45): 22773-22779. |
39 | Chen X R, Yao Y X, Yan C, et al. A diffusion-reaction competition mechanism to tailor lithium deposition for lithium-metal batteries[J]. Angewandte Chemie, 2020, 132(20): 7817-7821. |
40 | Nishikawa K, Mori T, Nishida T, et al. Li dendrite growth and Li+ ionic mass transfer phenomenon[J]. Journal of Electroanalytical Chemistry, 2011, 661(1): 84-89. |
[1] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[4] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[5] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[6] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[7] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[8] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[9] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[13] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[14] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[15] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||