CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5265-5272.DOI: 10.11949/0438-1157.20210389
• Process system engineering • Previous Articles Next Articles
Jiahua ZHU(),Wei LU,Yufeng PENG,Ji LI
Received:
2021-03-16
Revised:
2021-05-10
Online:
2021-10-05
Published:
2021-10-05
Contact:
Jiahua ZHU
通讯作者:
朱家骅
作者简介:
朱家骅(1953—),男,博士,教授,基金资助:
CLC Number:
Jiahua ZHU,Wei LU,Yufeng PENG,Ji LI. Principles and application of enclosed exhausts cycling for process industry (Ⅱ): Production of nitric acid from green power[J]. CIESC Journal, 2021, 72(10): 5265-5272.
朱家骅,卢蔚,彭玉凤,李季. 过程工业尾气封闭循环原理与应用(Ⅱ):绿电制硝酸[J]. 化工学报, 2021, 72(10): 5265-5272.
Add to citation manager EndNote|Ris|BibTeX
工艺部位 | 工艺气体组成/%(mol) | |||
---|---|---|---|---|
NH3 | NOx | O2 | N2 | |
氨氧化炉前 | 10.19 | 28.54 | 60.38 | |
氧化吸收塔后 | <0.2 | 13.50 | 85.50 |
Table 1 Composition of process flow at critical loop position of GPtNA
工艺部位 | 工艺气体组成/%(mol) | |||
---|---|---|---|---|
NH3 | NOx | O2 | N2 | |
氨氧化炉前 | 10.19 | 28.54 | 60.38 | |
氧化吸收塔后 | <0.2 | 13.50 | 85.50 |
1 | 生态环境部. 例行新闻发布会全文实录[OL]. [2021-02-28]. . |
Ministry of Ecology and Environment of the People's Republic of China. Full text of regular press conference [OL]. [2021-02-28]. . | |
2 | 北京青年报. 北京元宵节重污染区域传输影响占六成[OL]. [2021-02-28]. . |
Beijing Youth Daily. Regional transfer accounted for sixty percent of the heavy pollution sources appeared during this Lantern Festival [OL]. [2021-02-28]. . | |
3 | Pérez-Ramı́rez J, Kapteijn F, Schöffel K, et al. Formation and control of N2O in nitric acid production: where do we stand today? [J]. Applied Catalysis B: Environmental, 2003, 44(2): 117-151. |
4 | Frutos O D, Quijano G, Aizpuru A, et al. A state-of-the-art review on nitrous oxide control from waste treatment and industrial sources[J]. Biotechnology Advances, 2018, 36(4): 1025-1037. |
5 | 贾亮. 硝酸行业供需现状及发展建议[J]. 化学工业, 2017, 35(1): 36-42. |
Jia L. The supply and demand situation and suggestion of nitric acid industry development[J]. Chemical Industry, 2017, 35(1): 36-42. | |
6 | 袁波, 马宵慧, 喻干. 中美炼化行业大气污染物排放标准比较研究[J]. 世界石油工业, 2019, 26(3): 12-18. |
Yuan B, Ma X H, Yu G. Comparative study on emission standards of air pollutants in refining and chemical industry between China and US[J]. World Petroleum Industry, 2019, 26(3): 12-18. | |
7 | 环境保护部, 国家质量监督检验检疫总局. 硝酸工业污染物排放标准: [S]. 北京: 中国环境科学出版社, 2010. |
Ministry of Environment Protection, General Administration of Quality Supervision, Inspection and Quarantine of the P. R. C. Emission standards of pollutants for nitric acid industry: [S]. Beijing: China Environmental Science Press, 2010. | |
8 | 张友森. 我国硝酸的排放标准及收费政策[J]. 氮肥技术, 2018, 39(3): 36-37, 48. |
Zhang Y S. Nitric acid emission standard and charging policy in our country [J]. Nitrogenous Fertilizer Technology, 2018, 39(3): 36-37, 48. | |
9 | Kankani V G, Chatterjee I B, Joshi J B, et al. Process intensification in manufacture of nitric acid: NOx absorption using enriched and pure oxygen[J]. Chemical Engineering Journal, 2015, 278: 430-446. |
10 | Lee J J L, Haynes B S. Process intensification writ large with microchannel absorption in nitric acid production [J]. Chemical Engineering Science, 2017, 169: 140-150. |
11 | Wu Y, Dujardin C, Lancelot C, et al. Catalytic abatement of NO and N2O from nitric acid plants: a novel approach using noble metal-modified perovskites[J]. Journal of Catalysis, 2015, 328: 236-247. |
12 | 唐文骞, 杨同莲. 加快产业结构调整与建设大型硝酸装置的思考[J]. 煤化工, 2012, 40 (2): 5-9. |
Tang W Q, Yang T L. Accelerate industrial restructure and build large nitric acid plants[J]. Coal Chemical Industry, 2012, 40(2): 5-9. | |
13 | Joshi J B, Mahajani V V, Juvekar V A. Absorption of NOx gases[J]. Chemical Engineering Communications, 1985, 33(1/2/3/4): 1-92. |
14 | 李贤. 硝酸装置尾气采用选择性催化还原脱硝技术分析[J]. 硫磷设计与粉体工程, 2018(3): 5-7. |
Li X. Analysis of selective catalytic reduction process for tail gas of nitric acid plant [J]. Sulphur Phosphorus & Bulk Materials Handling Related Engineering, 2018(3): 5-7. | |
15 | 李卫平. SCR脱硝系统精准喷氨改造[J]. 生物化工, 2021, 7(1): 111-113. |
Li W P. Revamping of SCR denitrification system by precise ammonia injection[J]. Biological Chemical Engineering, 2021, 7(1): 111-113. | |
16 | Environmental Protection Agency (EPA). Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Nitric Acid Production Industry [M]. North Carolina: Office of Atmospheric Programs Climate Change Division, U. S. EPA, 2010. |
17 | Environmental Protection Agency (EPA). Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990—2030 [M]. Washington, DC: Office of Atmospheric Programs Climate Change Division, U. S. EPA, 2011. |
18 | 陈五平. 无机化工工艺学(二): 硫酸与硝酸[M]. 北京: 化学工业出版社, 1989. |
Chen W P. Inorganic Chemical Technology (Ⅱ): Sulphuric Acid and Nitric Acid [M]. Beijing: Chemical Industry Press, 1989. | |
19 | Chen T L, Kim H, Pan S Y, et al. Implementation of green chemistry principles in circular economy system towards sustainable development goals: challenges and perspectives[J]. Science of the Total Environment, 2020, 716: 136998. |
20 | 环境保护部. 环境空气质量标准[M]. 北京: 中国环境科学出版社, 2012. |
Ministry of Environment Protection. Ambient Air Quality Standards [M]. Beijing: China Environmental Science Press, 2012. | |
21 | Ikäheimo J, Kiviluoma J, Weiss R, et al. Power-to-ammonia in future North European 100% renewable power and heat system[J]. International Journal of Hydrogen Energy, 2018, 43(36): 17295-17308. |
22 | 国家环境保护总局科技标准司. 中国环境保护标准汇编2004-2006年(下册) [M]. 北京: 中国环境科学出版社, 2006. |
Department of Science and Technology Standards, State Environmental Protection Administration. Compilation of Chinese Environmental Protection Standards 2004—2006 (Volume Ⅱ)[M]. Beijing: China Environmental Science Press, 2006. | |
23 | 工业和信息化部. 合成氨生产企业二氧化碳排放量计算方法: [S]. 北京: 化学工业出版社, 2012. |
Ministry of Industry and Information Technology of the P. R. C. The calculation method of CO2emission in synthetic ammonia production: [S]. Beijing: Chemical Industry Press, 2012. | |
24 | 国家质量监督检验检疫总局, 国家标准化管理委员会. 稀硝酸单位产品能源消耗限额: [S]. 北京: 中国标准出版社, 2013. |
General Administration of Quality Supervision, Inspection and Quarantine, Standardization Administration of the P. R. C. The norm of energy consumption per unit product of dilute nitric acid: [S]. Beijing: Standards Press of China, 2013. | |
25 | 蔡银寅. 中国大气环境资源的地理分布[J]. 气象科技进展, 2020, 10(6): 106-117, 124. |
Cai Y Y. Geographical distribution of the atmospheric environmental resources in China[J]. Advances in Meteorological Science and Technology, 2020, 10(6): 106-117, 124. | |
26 | 胡英. 化工热力学[M]//化学工程手册: 上卷. 北京: 化学工业出版社, 1996. |
Hu Y. Chemical engineering thermodynamics[M]//Chemical Engineering Handbook: Vol. 1. Beijing: Chemical Industry Press, 1996. | |
27 | 张成芳. 合成氨工艺与节能[M]. 上海: 华东化工学院出版社, 1988. |
Zhang C F. Synthetic Ammonia Technology and Energy Saving [M]. Shanghai: Press of East-China Institute of Chemical Engineering, 1988. | |
28 | 朱家骅, 葛敬, 李季, 等. 电解水与空气分离联用制硝酸的封闭循环工艺: 109516445A[P]. 2019-03-26. |
Zhu J H, Ge J, Li J, et al. Closed-cycle technique for preparing nitric acid through combination of water electrolysis and air separation: 109516445A[P]. 2019-03-26. | |
29 | Energy Siemens. “Green” ammonia is the key to meeting the twin challenges of the 21st century [OL]. [2021-03-06]. . |
30 | 中国科学院洁净能源创新研究院. 千吨级“液态太阳燃料合成示范项目”通过科技成果鉴定[OL]. [2021-01-17]. . |
Dalian National Laboratory for Clean Energy, CAS. Appraisal of kiloton demonstration unit for liquid solar fuel synthesis [OL]. [2021-01-17]. . | |
31 | 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142. |
Wang J, Kang L X, Liu Y Z. Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems [J]. CIESC Journal, 2020, 71(3): 1131-1142. | |
32 | 何发明, 曾庆, 吴剑, 等. 天然气裂解制氢与水电解制氢合成氨工艺特性比较[J]. 化肥设计, 2020, 58(2): 5-9. |
He F M, Zeng Q, Wu J, et al. Comparison of process characteristics in hydrogen production by natural gas cracking and by hydro-electrolysis for ammonia synthesis[J]. Chemical Fertilizer Design, 2020, 58(2): 5-9. | |
33 | 严强. 创新型风机的设计方法和风电技术的发展方向[J]. 风力发电, 2018(1): 1-7. |
Yan Q. Design method of innovative wind turbine & development direction of wind turbine technology[J]. Wind Power, 2018(1): 1-7. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[3] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[4] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[5] | Ruiheng WANG, Pinjing HE, Fan LYU, Hua ZHANG. Parameter comparison and optimization of three solid-liquid separation methods for washed air pollution control residues from municipal solid waste incinerators [J]. CIESC Journal, 2023, 74(4): 1712-1723. |
[6] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[7] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[8] | Zizong WANG, Hansheng SUO, Xueliang ZHAO. Research and construction of digital twin intelligent ethylene plant [J]. CIESC Journal, 2023, 74(3): 1175-1186. |
[9] | Yalin WANG, Yuqing PAN, Chenliang LIU. Intermittent process monitoring based on GSA-LSTM dynamic structure feature extraction [J]. CIESC Journal, 2022, 73(9): 3994-4002. |
[10] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[11] | Ling YANG, Guomin CUI, Zhiqiang ZHOU, Yuan XIAO. Fine search strategy applied to mass exchange network synthesis [J]. CIESC Journal, 2022, 73(7): 3145-3155. |
[12] | Wenliang MENG, Guixian LI, Huairong ZHOU, Jingwei LI, Jian WANG, Ke WANG, Xueying FAN, Dongliang WANG. A novel coal to methanol process with near zero CO2 emission by pulverized coal gasification integrated green hydrogen [J]. CIESC Journal, 2022, 73(4): 1714-1723. |
[13] | Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations [J]. CIESC Journal, 2022, 73(4): 1631-1646. |
[14] | Shujun ZHANG, Shihui WANG, Xin ZHANG, Xu JI, Yiyang DAI, Yagu DANG, Li ZHOU. Surrogate-assisted multi-objective optimization of hydrogen networks with light hydrocarbon recovery unit [J]. CIESC Journal, 2022, 73(4): 1658-1672. |
[15] | Jianfei ZHANG, Jiajiang LIN, Xionglin LUO, Feng XU. Modeling analysis for product distribution control and optimization of heavy oil FCCU [J]. CIESC Journal, 2022, 73(3): 1232-1245. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||