CIESC Journal ›› 2021, Vol. 72 ›› Issue (11): 5875-5882.DOI: 10.11949/0438-1157.20211099
• Process safety • Previous Articles Next Articles
Haiqing WANG1(),Yin LIU1,Xiaolin XU2,Meichen LIU1
Received:
2021-08-02
Revised:
2021-09-06
Online:
2021-11-12
Published:
2021-11-05
Contact:
Haiqing WANG
通讯作者:
王海清
作者简介:
王海清(1974—),男,博士,教授,基金资助:
CLC Number:
Haiqing WANG, Yin LIU, Xiaolin XU, Meichen LIU. Optimal calculation of pressure setting value of flare system considering downstream risks[J]. CIESC Journal, 2021, 72(11): 5875-5882.
王海清, 刘荫, 许小林, 刘美晨. 考虑下游风险的火炬放空系统压力给定值优化计算[J]. 化工学报, 2021, 72(11): 5875-5882.
Add to citation manager EndNote|Ris|BibTeX
火炬气成分 | 体积 分数/% | 温度/ K | 火炬气绝热 指数 | 平均摩尔质量/(kg/kmol) | 火炬头火炬气密度/ (kg/m3) |
---|---|---|---|---|---|
H2O | 5 | 300 | 1.325 | 60.6 | 1.364 |
H2 | 5 | ||||
C5H12 | 80 | ||||
CH4 | 10 |
Table 1 Flare gas composition and physical properties in the plant
火炬气成分 | 体积 分数/% | 温度/ K | 火炬气绝热 指数 | 平均摩尔质量/(kg/kmol) | 火炬头火炬气密度/ (kg/m3) |
---|---|---|---|---|---|
H2O | 5 | 300 | 1.325 | 60.6 | 1.364 |
H2 | 5 | ||||
C5H12 | 80 | ||||
CH4 | 10 |
压力范围/bar | 进气阀Vr状态 | 压力控制阀Ve状态 | 卸压阀Vs状态 |
---|---|---|---|
0~0.1 | 关闭 | 关闭 | 关闭 |
0.1~0.3 | 开启 | 关闭 | 关闭 |
0.3~0.6 | 关闭 | 开度减小/关闭 | 关闭 |
0.6~0.7 | 关闭 | 开度增大/全开 | 开启 |
Table 2 The state of each valve changes with the pressure during the pressure rise in the liquid separation tank
压力范围/bar | 进气阀Vr状态 | 压力控制阀Ve状态 | 卸压阀Vs状态 |
---|---|---|---|
0~0.1 | 关闭 | 关闭 | 关闭 |
0.1~0.3 | 开启 | 关闭 | 关闭 |
0.3~0.6 | 关闭 | 开度减小/关闭 | 关闭 |
0.6~0.7 | 关闭 | 开度增大/全开 | 开启 |
取点序号 | Ve给定值/bar | Vs给定值/bar |
---|---|---|
1 | 0.15 | 0.25 |
2 | 0.2 | 0.3 |
3 | 0.25 | 0.35 |
4 | 0.3 | 0.4 |
5 | 0.35 | 0.45 |
6 | 0.4 | 0.5 |
7 | 0.45 | 0.55 |
8 | 0.5 | 0.6 |
9 | 0.55 | 0.65 |
10 | 0.6 | 0.7 |
Table 3 Possible values of given values of pressure control valve Ve and pressure relief valve Vs
取点序号 | Ve给定值/bar | Vs给定值/bar |
---|---|---|
1 | 0.15 | 0.25 |
2 | 0.2 | 0.3 |
3 | 0.25 | 0.35 |
4 | 0.3 | 0.4 |
5 | 0.35 | 0.45 |
6 | 0.4 | 0.5 |
7 | 0.45 | 0.55 |
8 | 0.5 | 0.6 |
9 | 0.55 | 0.65 |
10 | 0.6 | 0.7 |
取点序号 | 火炬头火炬气最大流速/(m/s) | 火炬头马赫数 |
---|---|---|
1 | 133.269 | 0.425 |
2 | 142.389 | 0.454 |
3 | 150.346 | 0.479 |
4 | 157.380 | 0.502 |
5 | 163.662 | 0.522 |
6 | 169.318 | 0.540 |
7 | 174.447 | 0.556 |
8 | 179.124 | 0.571 |
9 | 183.411 | 0.585 |
10 | 187.358 | 0.597 |
Table 4 Mach number of the flare head of each group when N=10
取点序号 | 火炬头火炬气最大流速/(m/s) | 火炬头马赫数 |
---|---|---|
1 | 133.269 | 0.425 |
2 | 142.389 | 0.454 |
3 | 150.346 | 0.479 |
4 | 157.380 | 0.502 |
5 | 163.662 | 0.522 |
6 | 169.318 | 0.540 |
7 | 174.447 | 0.556 |
8 | 179.124 | 0.571 |
9 | 183.411 | 0.585 |
10 | 187.358 | 0.597 |
取点序号 | Ve给定值/bar | Vs给定值/bar | 火炬头火炬气最大流速/(m/s) | 火炬头 马赫数 |
---|---|---|---|---|
1 | 0.105 | 0.205 | 123.781 | 0.395 |
? | ? | ? | ? | ? |
30 | 0.25 | 0.35 | 150.346 | 0.479 |
31 | 0.255 | 0.355 | 151.088 | 0.482 |
32 | 0.26 | 0.36 | 151.821 | 0.484 |
33 | 0.265 | 0.365 | 152.545 | 0.486 |
34 | 0.27 | 0.37 | 153.260 | 0.489 |
35 | 0.275 | 0.375 | 153.967 | 0.491 |
36 | 0.28 | 0.38 | 154.665 | 0.493 |
37 | 0.285 | 0.385 | 155.356 | 0.495 |
38 | 0.29 | 0.39 | 156.039 | 0.497 |
39 | 0.295 | 0.395 | 156.713 | 0.500 |
40 | 0.3 | 0.4 | 157.380 | 0.502 |
? | ? | ? | ? | ? |
100 | 0.6 | 0.7 | 187.358 | 0.597 |
Table 5 Mach number of the flare head of each group when N=100
取点序号 | Ve给定值/bar | Vs给定值/bar | 火炬头火炬气最大流速/(m/s) | 火炬头 马赫数 |
---|---|---|---|---|
1 | 0.105 | 0.205 | 123.781 | 0.395 |
? | ? | ? | ? | ? |
30 | 0.25 | 0.35 | 150.346 | 0.479 |
31 | 0.255 | 0.355 | 151.088 | 0.482 |
32 | 0.26 | 0.36 | 151.821 | 0.484 |
33 | 0.265 | 0.365 | 152.545 | 0.486 |
34 | 0.27 | 0.37 | 153.260 | 0.489 |
35 | 0.275 | 0.375 | 153.967 | 0.491 |
36 | 0.28 | 0.38 | 154.665 | 0.493 |
37 | 0.285 | 0.385 | 155.356 | 0.495 |
38 | 0.29 | 0.39 | 156.039 | 0.497 |
39 | 0.295 | 0.395 | 156.713 | 0.500 |
40 | 0.3 | 0.4 | 157.380 | 0.502 |
? | ? | ? | ? | ? |
100 | 0.6 | 0.7 | 187.358 | 0.597 |
取点序号 | 火炬气回收量/kg |
---|---|
1 | 1680.581 |
? | ? |
30 | 5025.959 |
31 | 5141.317 |
32 | 5256.675 |
33 | 5372.033 |
34 | 5487.391 |
35 | 5602.749 |
36 | 5718.107 |
37 | 5833.464 |
38 | 5948.822 |
39 | 6064.180 |
Table 6 Calculation results of flare gas recovery
取点序号 | 火炬气回收量/kg |
---|---|
1 | 1680.581 |
? | ? |
30 | 5025.959 |
31 | 5141.317 |
32 | 5256.675 |
33 | 5372.033 |
34 | 5487.391 |
35 | 5602.749 |
36 | 5718.107 |
37 | 5833.464 |
38 | 5948.822 |
39 | 6064.180 |
1 | Eshaghi S, Hamrang F. An innovative techno-economic analysis for the selection of an integrated ejector system in the flare gas recovery of a refinery plant[J]. Energy, 2021, 228: 120594. |
2 | Asadi J, Yazdani E, Hosseinzadeh Dehaghani Y, et al. Technical evaluation and optimization of a flare gas recovery system for improving energy efficiency and reducing emissions[J]. Energy Conversion and Management, 2021, 236: 114076. |
3 | Sinha B, Roy S, Bhagat M. Sustainable green policy by managing flare gas recovery: a case with middle east oil and gas industry[J]. Vision: the Journal of Business Perspective, 2020, 24(1): 35-46. |
4 | Lu S G. Optimize flare gas recovery system design to reduce emissions[J]. Hydrocarbon Processing, 2020: 41-45. |
5 | Sarkar S, Quddus N, Mannan M S, et al. Integrating flare gas with cogeneration systems: operational risk assessment[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104571. |
6 | Amin H, Dhote P, Kanade S. Reboiler pinch: an approach to optimize flare system design during FEED[J]. Hydrocarbon Processing, 2020: 53-57. |
7 | 方士珍, 张红伟. 炼油厂火炬系统的工艺设计[J]. 安徽化工, 2010, 36(3): 67-70. |
Fang S Z, Zhang H W. Flare system process design for refinery[J]. Anhui Chemical Industry, 2010, 36(3): 67-70. | |
8 | 肖宇, 汪本武, 代齐加. 海上油气田火炬放空气回收利用技术研究进展[J]. 海洋石油, 2021, 41(1): 97-100. |
Xiao Y, Wang B W, Dai Q J. Research progress on recovery and utilization technology of vented gas in offshore oil and gas fields[J]. Offshore Oil, 2021, 41(1): 97-100. | |
9 | Chadhuri S, Singh R B. Flare system design for a refinery mega-complex-front end and beyond[J]. Hydrocarbon Processing, 2020: 55-58. |
10 | 赵斌. 大型石化企业火炬系统设计泄放量的确定[J]. 中国资源综合利用, 2017, 35(12): 133-136. |
Zhao B. Study of flare system design load in large-scale petrochemical complex[J]. China Resources Comprehensive Utilization, 2017, 35(12): 133-136. | |
11 | Taleb Z, Ali A E. Study on the flare tip of a gas refinery with various designs of windshields using CFD simulations[J]. Brazilian Journal of Chemical Engineering, 2020, 37(1): 227-236. |
12 | 王鹏. 封闭式地面火炬多点射流火焰高度研究[J]. 消防科学与技术, 2018, 37(6): 732-735. |
Wang P. Study on height of multi-point jet diffusion flame of enclosed ground flare[J]. Fire Science and Technology, 2018, 37(6): 732-735. | |
13 | 王晓霞, 陈伟志. 火炬系统设计应注意的安全因素[J]. 化工设计, 2010, 20(6): 24-26, 44. |
Wang X X, Chen W Z. Safe factor to be noticed in flare system design[J]. Chemical Engineering Design, 2010, 20(6): 24-26, 44. | |
14 | 张杰东, 于安峰, 党文义. 高架火炬泄漏后果模拟研究[J]. 安全、健康和环境, 2016, 16(2): 45-47, 51. |
Zhang J D, Yu A F, Dang W Y. Simulation of the consequences of elevated flare leak[J]. Safety Health & Environment, 2016, 16(2): 45-47, 51. | |
15 | 吴运逸. 输气管道站场放空系统安全设计浅析[J]. 化工管理, 2014(11): 79-80. |
Wu Y Y. Analysis on safety design of venting system of gas pipeline station[J]. Chemical Enterprise Management, 2014(11): 79-80. | |
16 | Jo Y P, Cho Y, Hwang S. Dynamic analysis and optimization of flare network system for topside process of offshore plant[J]. Process Safety and Environmental Protection, 2020, 134: 260-269. |
17 | Pressure-relieving and Depressuring Systems: API STAN[S]. Amercia Petroleum Institute, 2014-06-04. |
18 | 中华人民共和国建设部. 中华人民共和国国家标准: 石油天然气工程设计防火规范[S]. 北京: 中国计划出版社, 2005. |
Ministry of Construction of the People's Republic of China. National Standard (Mandatory) of the People's Republic of China: Code for fire protection design of petroleum and natural gas engineering. [S]. Beijing: China Planning Press, 2005. | |
19 | 王海清, 刘荫, 高智泉, 等. 石化装置改扩建对火炬系统负荷影响的量化分析[J]. 化工进展, 2020, 39(9): 3842-3848. |
Wang H Q, Liu Y, Gao Z Q, et al. Quantitative analysis of influence of petrochemical plant modification and expansion on flare system load[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3842-3848. | |
20 | 刘荫, 王海清, 许小林, 等. 考虑火炬负荷风险的关联联锁回路SIL定级方法[J]. 化工学报, 2021, 72(5): 2754-2762. |
Liu Y, Wang H Q, Xu X L, et al. SIL grading method of associated overpressure interlock protection circuit considering flare load risk[J]. CIESC Journal, 2021, 72(5): 2754-2762. | |
21 | 眭文祺, 王海清, 冯军, 等. 火炬系统中的多压力单元泄放叠加算法研究[C]//第六届CCPS中国过程安全会议论文集. 2018: 762-771. |
Sui W Q, Wang H Q, Feng J, et al. Study on multi-pressure units relief superimposed algorithm in flare system[C]// 6th CCPS China Conference on Process Safety. 2018: 762-771. | |
22 | 李复. 可压缩流体的伯努利方程[J]. 大学物理, 2008, 27(8): 15-18, 27. |
Li F. Bernoulli's equation for compressible flow[J]. College Physics, 2008, 27(8): 15-18, 27. | |
23 | 俞锦涛, 陶宗明. 等温条件下可压缩理想气体的伯努利方程[J]. 物理与工程, 2016, 26(6): 72-74. |
Yu J T, Tao Z M. The Bernoulli's equation of compressible ideal gas under the isothermal condition[J]. Physics and Engineering, 2016, 26(6): 72-74. | |
24 | 何智慧, 李枝禄, 卜掌印. 伯努利方程法计算天然气井底压力[J]. 石化技术, 2017, 24(2): 169. |
He Z H, Li Z L, Bo Z Y. Calculation of natural gas well bottom-hole pressure by Bernoulli Equation[J]. Petrochemical Industry Technology, 2017, 24(2): 169. | |
25 | 王珊珊. Aspen Flare System Analyzer在火炬管网设计与分析中的具体应用[J]. 石油与天然气化工, 2017, 46(1): 111-114. |
Wang S S. Application of Aspen Flare System Analyzer in the design and analysis of flare-net[J]. Chemical Engineering of Oil & Gas, 2017, 46(1): 111-114. | |
26 | 黄付根, 张磊. ASPEN FLARE SYSTEM ANALYZER在火炬系统设计中的应用[J]. 石油化工设计, 2018, 35(3): 43-46, 7. |
Huang F G, Zhang L. Application of Aspen Flare System Analyzer in design of flare system[J]. Petrochemical Design, 2018, 35(3): 43-46, 7. | |
27 | Zolfaghari M, Pirouzfar V, Sakhaeinia H. Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants[J]. Energy, 2017, 124: 481-491. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[3] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[9] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[10] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[11] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[12] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[13] | Xiaoyang LIU, Jianliang YU, Yujie HOU, Xingqing YAN, Zhenhua ZHANG, Xianshu LYU. Effect of spiral microchannel on detonation propagation of hydrogen-doped methane [J]. CIESC Journal, 2023, 74(7): 3139-3148. |
[14] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[15] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||