CIESC Journal ›› 2021, Vol. 72 ›› Issue (2): 1107-1115.DOI: 10.11949/0438-1157.20201263
• Energy and environmental engineering • Previous Articles Next Articles
MU Xiujuan1(),ZHU Ganyu2(),YAN Kun2,ZHAO Liwen3,LI Shaopeng2,LI Huiquan2,4,SUN Guoxin1()
Received:
2020-09-04
Revised:
2020-11-02
Online:
2021-02-05
Published:
2021-02-05
Contact:
ZHU Ganyu,SUN Guoxin
牟秀娟1(),朱干宇2(),颜坤2,赵立文3,李少鹏2,李会泉2,4,孙国新1()
通讯作者:
朱干宇,孙国新
作者简介:
牟秀娟(1996—),女,硕士研究生,基金资助:
CLC Number:
MU Xiujuan, ZHU Ganyu, YAN Kun, ZHAO Liwen, LI Shaopeng, LI Huiquan, SUN Guoxin. Properties analysis of dry-process calcium carbide slag and study on acetylene gas escape behavior[J]. CIESC Journal, 2021, 72(2): 1107-1115.
牟秀娟, 朱干宇, 颜坤, 赵立文, 李少鹏, 李会泉, 孙国新. 干法电石渣性质分析及乙炔气逸出行为研究[J]. 化工学报, 2021, 72(2): 1107-1115.
元素 | 含量/% | ||||
---|---|---|---|---|---|
>106 μm | 75~106 μm | 58~75 μm | 48~58 μm | <48 μm | |
Ca | 65.72 | 69.24 | 68.14 | 67.97 | 67.74 |
O | 29.45 | 29.13 | 29.53 | 29.58 | 29.64 |
Fe | 2.86 | 0.23 | 0.17 | 0.18 | 0.19 |
Si | 1.09 | 0.65 | 1.17 | 1.23 | 1.31 |
Al | 0.32 | 0.32 | 0.53 | 0.57 | 0.59 |
S | 0.21 | 0.21 | 0.27 | 0.27 | 0.28 |
Ti | 0.14 | — | — | 0.04 | 0.06 |
Sr | 0.10 | 0.12 | 0.12 | 0.12 | 0.13 |
Cl | 0.03 | 0.04 | 0.02 | 0.03 | 0.03 |
Mg | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 |
Table 1 Determination of elemental composition of calcium carbide slag
元素 | 含量/% | ||||
---|---|---|---|---|---|
>106 μm | 75~106 μm | 58~75 μm | 48~58 μm | <48 μm | |
Ca | 65.72 | 69.24 | 68.14 | 67.97 | 67.74 |
O | 29.45 | 29.13 | 29.53 | 29.58 | 29.64 |
Fe | 2.86 | 0.23 | 0.17 | 0.18 | 0.19 |
Si | 1.09 | 0.65 | 1.17 | 1.23 | 1.31 |
Al | 0.32 | 0.32 | 0.53 | 0.57 | 0.59 |
S | 0.21 | 0.21 | 0.27 | 0.27 | 0.28 |
Ti | 0.14 | — | — | 0.04 | 0.06 |
Sr | 0.10 | 0.12 | 0.12 | 0.12 | 0.13 |
Cl | 0.03 | 0.04 | 0.02 | 0.03 | 0.03 |
Mg | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 |
17 | 汪远波, 沈岳松, 祝社民. 电石渣的资源化利用[J]. 环境工程, 2008, 26(s1): 256-258. |
Wang Y B, Shen Y S, Zhu S M. Reclamation and recycle of carbide slag[J]. Environmental Engineering, 2008, 26(s1): 256-258. | |
18 | 刘春英. 工业废弃物—电石渣的国内现状及其资源化方向[J]. 水泥技术, 2005, (6): 60-62. |
Liu C Y. Current state and reservation direction of industrial wastes-calcium carbide sludge[J]. Cement Technology, 2005, (6): 60-62. | |
19 | Zhang W Y, Hu Y, Xi L J, et al. Preparation of calcium carbonate superfine powder by calcium carbide residue[J]. Energy Procedia, 2012, 17: 1635-1640. |
1 | 中国产业信息网. 2019年中国聚氯乙烯(PVC)行业产能产量及价格走势分析: 房地产开工带动PVC下游产业的发展[EB/OL]. [2020-04-08]. . |
China Industry Information Network. Analysis of China's PVC industry capacity, production and price trends in 2019: Real estate construction drives the development of PVC downstream industries [EB/OL]. [2020-04-08]. . | |
20 | 卫泳波, 薛维汉, 郝强, 等. 电石渣浆在大型火电机组烟气脱硫中的成功应用[J]. 电力环境保护, 2006, 22(1): 17-19. |
Wei Y B, Xue W H, Hao Q, et al. Application of calcium carbide slurry in flue gas desulfurization of large coal-fired power plant [J]. Electric Power Environmental Protection, 2006, 22(1): 17-19. | |
2 | Zhao Y, Zhan J, Liu G, et al. Evaluation of dioxins and dioxin-like compounds from a cement plant using carbide slag from chlor-alkali industry as the major raw material[J]. Journal of Hazardous Materials, 2017, 330(5): 135-141. |
3 | 王欣荣. 浅谈电石渣的综合利用[J]. 中国氯碱, 2003, 16(8): 36-39. |
21 | 王霞, 黄延东. 电石渣脱硫剂的应用[J]. 聚氯乙烯, 2018, (7): 41-44. |
Wang X, Huang Y D. Application of calcium carbide slag desulphurizer[J]. Polyvinyl Chloride, 2018, (7): 41-44. | |
22 | 赵晓勇, 吕学鑫, 徐科. 电石渣粉作为脱硫剂的综合利用[J]. 河南科技, 2016, (13): 148-149. |
3 | Wang X R. Brief introduction of comprehensive utilization of carbide slag[J]. China Chlor-Alkali, 2003, 16(8): 36-39. |
4 | 程军, 周俊虎, 刘建忠, 等. 电石渣动态煅烧及烧结过程的微观结构分析[J]. 化工学报, 2003, 54(7): 984-988. |
Cheng J, Zhou J H, Liu J Z, et al. Microstructure change in dynamic calcination and sintering of carbide slag[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(7): 984-988. | |
5 | Yang H, Cao J, Wang Z, et al. Discovery of impurities existing state in carbide slag by chemical dissociation[J]. International Journal of Mineral Processing, 2014, 130: 66-73. |
6 | 程姚生, 肖独山, 徐杰, 等. 电石渣的理化性质分析及其应用研究[J]. 山东化工, 2016, 45(11): 31-34. |
Cheng Y S, Xiao D S, Xu J, et al. Analysis and characterization of physiochemical property of carbide slag and its application study [J]. Shandong Chemical Industry, 2016, 45(11): 31-34. | |
7 | Phoo-Ngernkham T, Phiangphimai C, Intarabut D, et al. Low cost and sustainable repair material made from alkali-activated high-calcium fly ash with calcium carbide residue[J]. Construction and Building Materials, 2020, 247: 118543. |
8 | Wang X, Li Y, Zhang W, et al. Simultaneous SO2 and NO removal by pellets made of carbide slag and coal char in a bubbling fluidized-bed reactor[J]. Process Safety and Environmental Protection, 2020, 134: 83-94. |
22 | Zhao X Y, Lyu X X, Xu K. Comprehensive utilization of calcium carbide slag powder as desulfurization agent[J]. Henan Science and Technology, 2016, (13): 148-149. |
23 | 邹成磊. 干法乙炔电石渣的特性及其影响分析[J]. 中国化工贸易, 2012, 4(8): 159. |
Zou C L. Analysis of the characteristics and influence of dry-process acetylene carbide slag[J]. China Chemical Trade, 2012, 4(8): 159. | |
24 | 杨金荣. 电石水解法制乙炔火灾爆炸危险性分析与对策[J]. 化学工程与装备, 2012, (9): 181-183. |
Yang J R. Hazard analysis and countermeasures of fire and explosion of acetylene produced by calcium carbide hydrolysis [J]. Chemical Engineering and Equipment, 2012, (9): 181-183. | |
25 | 陈凯伟. 浅析密闭式低压发生器湿法制乙炔的火灾爆炸危险性及其安全技术对策[J]. 化学工程与装备, 2020, (4): 273-274, 276. |
Chen K W. Analysis on the fire and explosion hazard and safety technical countermeasures of acetylene produced by wet method with closed low pressure generator [J]. Chemical Engineering and Equipment, 2020, (4): 273-274, 276. | |
26 | 其乐木格, 韩漠, 胡长峰. 乙炔火灾爆炸危险性分析及预防事故对策[J]. 化工进展, 2010, 29(S2): 340-345. |
Qile M G, Han M, Hu C F. Hazard analysis and accident prevention measures for fire explosion of acetylene[J]. Chemical Industry and Engineering Progress, 2010, 29(S2): 340-345. | |
27 | 陈刚, 徐婕, 杨小彦, 等. 一种处理干法电石渣实现乙炔气回收的装置及工艺: 108530252[P]. 2018. |
Chen G, Xu J, Yang X Y, et al. A device and process for processing acetylene gas recovery from dry-process calcium carbide slag: 108530252[P]. 2018. | |
28 | 秦陆军, 何胜平, 孙国玉. 电石渣用于制造水泥生产系统安全防爆技术[J]. 中国水泥, 2018, (2): 89-91. |
Qin L J, He S P, Sun G Y. Calcium carbide slag is used in the safety explosion-proof technology of cement production system [J]. China Cement, 2018, (2): 89-91. | |
29 | 李红荣, 闫巧峰, 许文彪. 干电石渣储库防爆管理措施[J]. 水泥, 2019, (1): 45-46. |
9 | Han F, Wu L. Industrial Solid Waste Recycling in Western China[M]. Singapore: Springer Singapore, 2019: 370-384. |
10 | 张日红, 倪敏怡. 电石渣混凝土步道砖及其制作方法: 1978366[P]. 2007. |
29 | Li H R, Yan Q F, Xu W B. Explosion-proof management measures for dry calcium carbide slag storage[J]. Cement, 2019, (1): 45-46. |
30 | Brunauer S, Deming L S, Deming W E, et al. On a theory of the van der Waals adsorption of gases[J]. J. Am. Chem. Soc., 1940, 62(7): 1723-1732. |
10 | Zhang R H, Ni M Y. Carbide slag concrete walk brick and its manufacturing method: 1978366[P]. 2007. |
11 | 孙学妙, 朱清, 黄向东. 电石渣混凝土小型空心砌块: 1087695[P]. 1994. |
Sun X M, Zhu Q, Huang X D. Carbide slag concrete small hollow block: 1087695[P]. 1994. | |
31 | Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems[J]. Pure & Applied Chemistry, 1985, 57(4): 603-619. |
32 | 刘诗薇, 邹冲, 赵俊学, 等. 不同焦煤中硫的赋存形态及热解气体逸出分析[J]. 煤炭转化, 2018, 41(2): 24-30. |
12 | Wang J S, Wang G H, Liu Y, et al. Thermal stability, combustion behavior, and toxic gases in fire effluents of an intumescent flame-retarded polypropylene system[J]. Industrial&Engineering Chemistry Research, 2014, 53(17): 6978-6984. |
13 | Zhang J J, Tan H B, He X Y, et al. Utilization of carbide slag-granulated blast furnace slag system by wet grinding as low carbon cementitious materials[J]. Construction and Building Materials, 2020, 249: 118763. |
14 | Zhang S, Gong X, Wang Z, et al. Preparation of block CaO from carbide slag and its compressive strength improved by H3PO4[J]. International Journal of Mineral Processing, 2014, 129: 6-11. |
15 | 梁红, 秦娜. 纳米碳酸钙的制备及表面改性技术[J]. 广州化工, 2009, 37(7): 45-47. |
Liang H, Qin N. Preparation and surface modification technology of nanometer calcium carbonate[J]. Guangzhou Chemical Industry, 2009, 37(7): 45-47. | |
16 | 马林凤, 朱建华. 利用电石渣代替石灰石制备氧化钙的可行性分析[J]. 聚氯乙烯, 2017, 45(7): 39-43. |
Ma L F, Zhu J H. Feasibility analysis of calcium oxide production from carbide slag instead of limestone[J]. Polyvinyl Chloride, 2017, 45(7): 39-43. | |
32 | Liu S W, Zou C, Zhao J X, et al. Speciation of sulfur and regularity of pyrolysis gas evolution in different coking coals[J]. Coal Conversion, 2018, 41(2): 24-30. |
[1] | Erqi WANG, Shuzhou PENG, Zhen YANG, Yuanyuan DUAN. Evaluation of vapor-liquid equilibrium models for mixtures containing HFOs [J]. CIESC Journal, 2023, 74(8): 3216-3225. |
[2] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[3] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[4] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[5] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[6] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[7] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[8] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[9] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[10] | Peixu ZHOU, Yalun LI, Gongran YE, Yuan ZHUANG, Xilei WU, Zhikai GUO, Xiaohong HAN. Influence of physical properties of working fluids on leakage and diffusion characteristics of refrigerant in limited space [J]. CIESC Journal, 2023, 74(2): 953-967. |
[11] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[12] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[13] | Xinyi LUO, Chao FENG, Jing LIU, Yu QIAO. Phosphorus recovery from products of sewage sludge via different thermal treatment processes [J]. CIESC Journal, 2022, 73(9): 4034-4044. |
[14] | Peng WEI, Jun CHEN, Zhiguo WANG, Fei LIU. Improved productivity strategy of simulated moving bed based on binary-partial-discard [J]. CIESC Journal, 2022, 73(7): 3099-3108. |
[15] | Jian CAO, Nannan YE, Guancong JIANG, Yao QIN, Shibo WANG, Jiahua ZHU, Xiaohua LU. Mass transfer resistance analysis of the interaction between porous carbon and hydrogen peroxide based on microcalorimetry [J]. CIESC Journal, 2022, 73(6): 2543-2551. |
Viewed | ||||||||||||||||||||||
Full text 723
|
|
|||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||