CIESC Journal ›› 2021, Vol. 72 ›› Issue (3): 1487-1495.DOI: 10.11949/0438-1157.20201880
• Process system engineering • Previous Articles Next Articles
YU Chengyuan(),WU Jinkui,ZHOU Li(),JI Xu,DAI Yiyang,DANG Yagu
Received:
2020-12-20
Revised:
2020-12-27
Online:
2021-03-05
Published:
2021-03-05
Contact:
ZHOU Li
通讯作者:
周利
作者简介:
于程远(1996—),男,硕士研究生,基金资助:
CLC Number:
YU Chengyuan, WU Jinkui, ZHOU Li, JI Xu, DAI Yiyang, DANG Yagu. Prediction of energy conversion efficiency of organic solar cells based on deep learning[J]. CIESC Journal, 2021, 72(3): 1487-1495.
于程远, 吴金奎, 周利, 吉旭, 戴一阳, 党亚固. 基于深度学习预测有机光伏电池能量转换效率[J]. 化工学报, 2021, 72(3): 1487-1495.
Add to citation manager EndNote|Ris|BibTeX
1 | Leijtens T, Eperon G E, Barker A J, et al. Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(11): 3472-3481. |
2 | Zheng B, Wang F, Dong S, et al. Supramolecular polymers constructed by crown ether-based molecular recognition[J]. Chemical Society Reviews, 2012, 41(5): 1621-1636. |
3 | Jošt M, Kegelmann L, Korte L, et al. Monolithic Perovskite Tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency[J]. Advanced Energy Materials, 2020, 10(26): 1904102. |
4 | Kaltenbrunner M, White M S, Glowacki E D, et al. Ultrathin and lightweight organic solar cells with high flexibility[J]. Nature Communications, 2012, 3(1): 770. |
5 | Fukuda K, Yu K, Someya T. The future of flexible organic solar cells[J]. Advanced Energy Materials, 2020, 10(25): 2000765. |
6 | Meng L X, Zhang Y M, Wan X J, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361(6407): 1094-1098. |
7 | Jinno H, Fukuda K, Xu X M. et al. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications[J]. Nature Energy, 2017, 2(10): 780-785. |
8 | Hedley G J, Ruseckas A, Samuel I D W. Light harvesting for organic photovoltaics[J]. Chemical Reviews, 2017, 117(2): 796-837. |
9 | Liu C, Wang K, Gong X, et al. Low bandgap semiconducting polymers for polymeric photovoltaics[J]. Chemical Society Reviews, 2016, 45(17): 4825-4846. |
10 | Chen C, Zuo Y, Ye W, et al. A critical review of machine learning of energy materials[J]. Advanced Energy Materials, 2020, 10(8): 1903242. |
11 | Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency [J]. Advanced Materials, 2006, 18(6): 789-794. |
12 | Green M A, Dunlop E D, Hohl-Ebinger J, et al. Solar cell efficiency tables (Version 55)[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(1): 3-15. |
13 | Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel T D, et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach[J]. Nature Materials, 2016, 15(10): 1120-1127. |
14 | Kim E, Huang K, Jegelka S, et al. Virtual screening of inorganic materials synthesis parameters with deep learning[J]. npj Computational Materials, 2017, 3(1): 53. |
15 | Wu S, Kondo Y, Kakimoto M, et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm[J]. npj Computational Materials, 2019, 5(1): 66. |
16 | Yamada H, Liu C, Wu S, et al. Predicting materials properties with little data using shotgun transfer learning[J]. ACS Central Science, 2019, 5(10): 1717-1730. |
17 | Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, et al. The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid[J]. The Journal of Physical Chemistry Letters, 2011, 2(17): 2241-2251. |
18 | Lopez S A, Pyzer-Knapp E O, Simm G N, et al. The Harvard organic photovoltaic dataset[J]. Scientific Data, 2016, 3(1): 160086. |
19 | Lopez S A, Sanchez-Lengeling B, de Goes Soares J, et al. Design principles and top non-fullerene acceptor candidates for organic photovoltaics[J]. Joule, 2017, 1(4): 857-870. |
20 | Hachmann J, Olivares-Amaya R, Jinich A, et al. Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard clean energy project[J]. Energy & Environmental Science, 2014, 7(2): 698-704. |
21 | Padula D, Simpson J D, Troisi A. Combining electronic and structural features in machine learning models to predict organic solar cells properties[J]. Materials Horizons, 2019, 6(2): 343-349. |
22 | Sahu H, Rao W, Troisi A, et al. Toward predicting efficiency of organic solar cells via machine learning and improved descriptors[J]. Advanced Energy Materials, 2018, 8(24): 1801032.1-1801032.9. |
23 | Sahu H, Yang F, Ye X B, et al. Designing promising molecules for organic solar cells via machine learning assisted virtual screening[J]. Journal of Materials Chemistry A, 2019, 7(29): 17480-17488. |
24 | Sun W B, Li M, Li Y, et al. Material evaluation: the use of deep learning to fast evaluate organic photovoltaic materials[J]. Advanced Theory & Simulations, 2019, 2(1): 1970001. |
25 | Paul A, Jha D, Al-Bahrani R, et al. Transfer learning using ensemble neural networks for organic solar cell screening[C]//2019 International Joint Conference on Neural Networks. Budapest, Hungary, 2019. |
26 | Cadeddu A, Wylie E K, Jurczak J, et al. Organic chemistry as a language and the implications of chemical linguistics for structural and retrosynthetic analyses[J]. Angewandte Chemie International Edition, 2014, 53(31): 8108-8112. |
27 | Wu J K, Wang S H, Zhou L, et al. Deep-learning architecture in QSPR modeling for the prediction of energy conversion efficiency of solar cells[J]. Industrial & Engineering Chemistry Research, 2020, 59 (42): 18991-19000. |
28 | RDKit: Open-Source Cheminformatics Software[CP/OL]. [2020-10-26]. . |
29 | Hagberg A A, Schult D A, Swart P J. Exploring network structure, dynamics, and function using networkx[C]//Varoquaux G, Vaught T, Millman J. Proceedings of the 7th Python in Science Conference. Pasadena, CA, USA, 2008: 11-15. |
30 | Costa F, de Grave K D. Fast neighborhood subgraph pairwise distance kernel[C]//Fürnkranz J, Joachims T. Proceedings of the 27th International Conference on International Conference on Machine Learning. Madison, WI, USA: Omnipress, 2010: 255-262. |
31 | Zhao Y, Hayashida M, Jindalertudomdee J, et al. Breadth-first search approach to enumeration of tree-like chemical compounds[J]. Journal of Bioinformatics & Computational Biology, 2013, 11(6): 1343007. |
32 | Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[C]//Bengio Y, LeCun Y. 3rd International Conference on Learning Representations. San Diego, CA, USA, 2015. |
33 | Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
34 | Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. |
35 | Graves A, Liwicki M, Fernández S, et al. A novel connectionist system for unconstrained handwriting recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(5): 855-868. |
36 | Sutskever I, Vinyals O, Le Q V. Sequence to sequence learning with neural networks[C]//Ghahramani Z, Welling M, Cortes C, et al. Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. Cambridge, MA, USA: MIT Press, 2014: 3104-3112. |
37 | Wang C, Yang H J, Bartz C, et al. Image captioning with deep bidirectional LSTMs[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York, NY, USA: Association for Computing Machinery, 2016: 988-997. |
38 | Zhou P, Shi W, Tian J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Berlin, Germany: Association for Computational Linguistics, 2016: 207-212. |
39 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Luxburg U V, Guyon I. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long. Red Hook, NY, USA: Curran Associates Inc., 2017: 6000-6010. |
40 | Paszke A, Gross S, Massa F. PyTorch: an imperative style, high-performance deep learning library[C]//33rd Conference on Neural Information Processing Systems. Vancouver, Canada, 2019. |
41 | Kingma D, Ba J. Adam: a method for stochastic optimization[C]//Bengio Y, LeCun Y. 3rd International Conference on Learning Representations. San Diego, CA, USA, 2015. |
42 | Rogers D, Hahn M. Extended-connectivity fingerprints[J]. Journal of Chemical Information & Modeling, 2010, 50(5): 742-754. |
43 | Jaeger S, Fulle S, Turk S. Mol2vec: unsupervised machine learning approach with chemical intuition[J]. Journal of Chemical Information & Modeling, 2018, 58(1): 27-35. |
44 | Lipton Z C. The mythos of model interpretability[J]. Communications of the ACM, 2018, 61(10): 36-43. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[9] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[10] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[11] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[12] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[13] | Yulong HUANG, Fan LYU, Junjie QIU, Hua ZHANG, Pinjing HE. Physicochemical properties and VOCs molecular characteristics of liquid digestate from anaerobic digestion of putrescible waste [J]. CIESC Journal, 2023, 74(3): 1275-1285. |
[14] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[15] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||