CIESC Journal ›› 2021, Vol. 72 ›› Issue (4): 2241-2248.DOI: 10.11949/0438-1157.20201118
• Energy and environmental engineering • Previous Articles Next Articles
YANG Lin1,2(),MENG Xiaomi1,YAO Lu1,2,LAI Yuguo1,JIANG Wenju1,2(
)
Received:
2020-08-05
Revised:
2020-11-03
Online:
2021-04-05
Published:
2021-04-05
Contact:
JIANG Wenju
杨林1,2(),孟小谜1,姚露1,2,赖雨果1,蒋文举1,2(
)
通讯作者:
蒋文举
作者简介:
杨林(1990—),男,博士,副研究员,基金资助:
CLC Number:
YANG Lin, MENG Xiaomi, YAO Lu, LAI Yuguo, JIANG Wenju. Combined low-temperature flue gas denitrification and desulfurization over the natural mineral blending modified activated coke[J]. CIESC Journal, 2021, 72(4): 2241-2248.
杨林, 孟小谜, 姚露, 赖雨果, 蒋文举. 天然矿物共混活性焦联合低温脱硫脱硝[J]. 化工学报, 2021, 72(4): 2241-2248.
1 | Du X, Li C, Zhao L, et al. Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke[J]. Appl. Catal. B: Environ., 2018, 232: 37-48. |
2 | Wang M X, Guo Z, Huang Z H, et al. NH3-activated carbon nanofibers for low-concentration NO removal at room temperature[J]. Catal. Commun., 2015, 62: 83-88. |
3 | Yang L, Jiang X, Yang Z, et al. Effect of MnSO4 on the removal of SO2 by manganese-modified activated coke[J]. Ind. Eng. Chem. Res., 2015, 54(5): 1689-1696. |
4 | Yuan J, Jiang X, Zou M, et al. Copper ore-modified activated coke: highly efficient and regenerable catalysts for the removal of SO2[J]. Ind. Eng. Chem. Res., 2018, 57(46): 15731-15739. |
5 | Gao X, Liu S, Zhang Y, et al. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO[J]. J. Hazard. Mater., 2011, 188(1/2/3): 58-66. |
6 | Wang J, Yan Z, Liu L, et al. Low-temperature SCR of NO with NH3 over activated semi-coke composite-supported rare earth oxides[J]. Appl. Surf. Sci., 2014, 309: 1-10. |
7 | Li J, Kobayashi N, Hu Y. A new flue gas activation process for SO2 removal with activated coke in coal power plant[J]. J. Environ. Eng., 2007, 2(4): 740-751. |
8 | Jüntgen H, Richter E, Knoblauch K, et al. Catalytic NOx reduction by ammonia on carbon catalysts[J]. Chem. Eng. Sci., 1988, 43(3): 419-428. |
9 | Guo Z, Xie Y, Hong I, et al. Catalytic oxidation of NO to NO2 on activated carbon[J]. Energy Convers. Manage., 2001, 42(15): 2005-2018. |
10 | Yao L, Yang L, Jiang W, et al. Removal of SO2 from flue gas on a copper modified activated coke prepared by a novel one-step carbonization activation blending method[J]. Ind. Eng. Chem. Res., 2019, 58(34): 15693-15700. |
11 | Zhao B, Yi H, Tang X, et al. Copper modified activated coke for mercury removal from coal-fired flue gas[J]. Chem. Eng. J., 2016, 286: 585-593. |
12 | Wang J, Yan Z, Liu L, et al. In situ DRIFTS investigation on the SCR of NO with NH3 over V2O5 catalyst supported by activated semi-coke[J]. Appl. Surf. Sci., 2014, 313: 660-669. |
13 | Fan L, Chen J, Guo J, et al. Influence of manganese, iron and pyrolusite blending on the physiochemical properties and desulfurization activities of activated carbons from walnut shell[J]. J. Anal. Appl. Pyrol., 2013, 104: 353-360. |
14 | Belhachemi M, Rios R V R A, Addoun F, et al. Preparation of activated carbon from date pits: effect of the activation agent and liquid phase oxidation[J]. J. Anal. Appl. Pyrol., 2009, 86(1): 168-172. |
15 | Huang T, Li Y, Guo J, et al. Desulfurization activity of cobalt-blended into activated carbon by one-step activation method[J]. Asian J. Chem., 2014, 26(4): 1058-1062. |
16 | Yang L, Jiang X, Huang T, et al. Physicochemical characteristics and desulfurization activity of pyrolusite-blended activated coke[J]. Environ. Technol., 2015, 36(22): 2847-2854. |
17 | Wang P, Jiang X, Zhang C, et al. Desulfurization and regeneration performance of titanium ore modified activated coke[J]. Energ. Fuel., 2017, 31(5): 5266-5274. |
18 | Yang L, Jiang X, Jiang W, et al. Cyclic regeneration of pyrolusite-modified activated coke by blending method for flue gas desulfurization[J]. Energ. Fuel., 2017, 31(4): 4556-4564. |
19 | Yang L, Jiang W, Yao L, et al. Suitability of pyrolusite as additive to activated coke for low-temperature NO removal[J]. J. Chem. Technol. Biot., 2018, 93(3): 690-697. |
20 | Ma J, Liu Z, Liu Q, et al. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures—role of V2O5 on SO2 removal[J]. Fuel Process. Technol., 2008, 89(3): 242-248. |
21 | Li Y, Zhang X, Huangfu L, et al. The simultaneous removal of SO2 and NO from flue gas over activated coke in a multi-stage fluidized bed at low temperature[J]. Fuel, 2020, 275: 117862. |
22 | Jung S, Oh S, Choi G, et al. Production and characterization of microporous activated carbons and metallurgical bio-coke from waste shell biomass[J]. J. Anal. Appl. Pyrol., 2014, 109: 123-131. |
23 | Sreńscek Nazzal J, Glonek K, Młodzik J, et al. Increase the microporosity and CO2 adsorption of a commercial activated carbon[J]. Appl. Mech. Mater., 2015, 749: 17-21. |
24 | Liu Y, Qu Y, Guo J, et al. Thermal regeneration of manganese supported on activated carbons treated by HNO3 for desulfurization[J]. Energ. Fuel., 2015, 29(3): 1931-1940. |
25 | 谢银银. 锰系脱硝催化剂的制备及表征[D]. 重庆: 重庆大学, 2012. |
Xie Y Y. Preparation and characterization of manganese-based catalysts [D]. Chongqing: Chongqing University, 2012. | |
26 | Yang S, Qi F, Xiong S, et al. MnOx supported on Fe–Ti spinel: a novel Mn based low temperature SCR catalyst with a high N2 selectivity[J]. Appl. Catal. B: Environ., 2016, 181: 570-580. |
27 | Zhan S, Qiu M, Yang S, et al. Facile preparation of MnO2 doped Fe2O3 hollow nanofibers for low temperature SCR of NO with NH3[J]. J. Mater. Chem. A, 2014, 2(48): 20486-20493. |
28 | Ţucureanu V, Matei A, Avram A M. FTIR spectroscopy for carbon family study[J]. Crit. Rev. Anal. Chem., 2016, 46(6): 502-520. |
29 | Teng L H, Tang T D. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers[J]. J. Zhejiang Univ.-Sci. A, 2008, 9(5): 720-726. |
30 | Liao L, Pan C. Enhanced electrochemical capacitance of nitrogen-doped carbon nanotubes synthesized from amine flames[J]. Soft Nanoscience Letters, 2011, 1(1): 16-23. |
31 | Mansor N A, Tessonnier J P, Rinaldi A, et al. Chemically modified multi-walled carbon nanotubes (MWCNTs) with anchored acidic groups[J]. Sains Malaysiana, 2012, 41(5): 603-609. |
32 | Jin R, Liu Y, Wang Y, et al. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl. Catal. B: Environ., 2014, 148: 582-588. |
33 | Szymański G S, Grzybek T, Papp H. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3[J]. Catal. Today, 2004, 90(1): 51-59. |
34 | Rubio B, Izquierdo M T. Low cost adsorbents for low temperature cleaning of flue gases[J]. Fuel, 1998, 77(6): 631-637. |
35 | Wang S, Zhu Z H. Effects of acidic treatment of activated carbons on dye adsorption[J]. Dyes and Pigments, 2007, 75(2): 306-314. |
36 | 翟润生, 蔡茂盛, Kolb D M. 硫酸溶液中Pt(111)电极面上存在SO42-的XPS证据[J]. 物理化学学报, 1994, 10(8): 741-743. |
Zhai R S, Cai M S, Kolb D M. XPS evidence of sulfate anion adsorption on emersed Pt(111) in H2SO4 solution [J]. Acta Physico-Chimica Sinica, 1994, 10(8): 741-743. | |
37 | David G O, Tsuji K, Shiraishi I. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process[J]. Fuel Process. Technol., 2000, 65(99): 393-405. |
38 | Tang Q, Zhang Z G, Zhu W P, et al. SO2 and NO selective adsorption properties of coal-based activated carbons[J]. Fuel, 2005, 84(4): 461-465. |
39 | 许绿丝, 岑泽文, 曾汉才, 等. 活性炭纤维吸附 NO和SO2的试验研究[J]. 华中科技大学学报(自然科学版), 2006, 34(2): 105-107. |
Xu L S, Cen Z W, Zeng H C, et al. An experimental study on the adsorption of NO and SO2 by activated carbon fibers [J]. J. Huazhong Univ. Sci. Technol. (Natural Science Edition), 2006, 34(2): 105-107. | |
40 | Rubel A M, Stencel J M. The effect of low-concentration SO2 on the adsorption of NO from gas over activated carbon[J]. Fuel, 1997, 76(6): 521-526. |
41 | Li K, Ling L, Lu C, et al. Catalytic removal of SO2 over ammonia-activated carbon fibers[J]. Carbon, 2001, 39(12): 1803-1808. |
42 | 周静, 于才渊. 改性炭基催化剂低温烟气选择性还原脱硝性能研究[J]. 干燥技术与设备, 2015, 13(2): 33-38. |
Zhou J, Yu C Y. Investigation of modified carbon-based catalyst on low-temperature selective reduction of flue gas denitration performance [J]. Dry. Technol. Equip., 2015, 13(2): 33-38. | |
43 | 张翠平. SO2对MnOx/PG催化剂低温脱硝活性影响行为及机理研究[D]. 合肥: 合肥工业大学, 2013. |
Zhang C P. The factors and mechanism study of SO2 influence on the denitration of MnOx/PG catalysts at low temperature [D]. Hefei: Hefei University of Technology, 2013. | |
44 | 吕晓纬, 万亚锋, 刘波, 等. 锰前驱体对负载型氧化锰催化剂脱硝性能的影响[J]. 工业催化, 2014, 22(12): 953-957. |
Lyu X W, Wan Y F, Liu B, et al. Effects of Mn precursors on performance of supported Mn/Al2O3 catalysts for selective catalytic reduction of NO[J]. Industrial Catalysis, 2014, 22(12): 953-957. |
[1] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[4] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[5] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[6] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[7] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[13] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[14] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 143
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 465
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||