CIESC Journal ›› 2021, Vol. 72 ›› Issue (5): 2436-2447.DOI: 10.11949/0438-1157.20201409
• Reviews and monographs • Previous Articles Next Articles
CHEN Tingting(),YIN Jiongting,XU Yingjie()
Received:
2020-10-09
Revised:
2020-12-09
Online:
2021-05-05
Published:
2021-05-05
Contact:
XU Yingjie
通讯作者:
许映杰
作者简介:
陈婷婷(1998—),女,硕士研究生,基金资助:
CLC Number:
CHEN Tingting, YIN Jiongting, XU Yingjie. Research progress of ionic liquids in preparation of ZnO nanomaterials[J]. CIESC Journal, 2021, 72(5): 2436-2447.
陈婷婷, 尹炯婷, 许映杰. 离子液体在纳米ZnO材料制备中的研究进展[J]. 化工学报, 2021, 72(5): 2436-2447.
1 | Rogers R D. Chemistry: ionic liquids: solvents of the future?[J]. Science, 2003, 302(5646): 792-793. |
2 | Shi G L, Zhao H Q, Chen K H, et al. Efficient capture of CO2 from flue gas at high temperature by tunable polyamine-based hybrid ionic liquids[J]. AIChE Journal, 2020, 66(1): e16779. |
3 | 刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147. |
Liu J J, Fu X, Xu Y J. Progress on carbon monoxide removal using ionic liquids[J]. CIESC Journal, 2020, 71(1): 138-147. | |
4 | Chen Y, Mu T C. Conversion of CO2 to value-added products mediated by ionic liquids[J]. Green Chemistry, 2019, 21(10): 2544-2574. |
5 | Rouster P, Pavlovic M, Cao T C, et al. Stability of titania nanomaterials dispersed in aqueous solutions of ionic liquids of different alkyl chain lengths[J]. The Journal of Physical Chemistry C, 2019, 123(20): 12966-12974. |
6 | Cui J C, Li Y, Chen D, et al. Ionic liquid-based stimuli-responsive functional materials[J]. Advanced Functional Materials, 2020, 30(50): 2005522. |
7 | Ukidve A, Cu K, Goetz M, et al. Ionic-liquid-based safe adjuvants[J]. Advanced Materials, 2020, 32(46): 2002990. |
8 | Zheng L, Li J, Yu M M, et al. Molecular sizes and antibacterial performance relationships of flexible ionic liquid derivatives[J]. Journal of the American Chemical Society, 2020, 142(47): 20257-20269. |
9 | Bai S, Da P, Li C, et al. Planar perovskite solar cells with long-term stability using ionic liquid additives[J]. Nature, 2019, 571(7764): 245-250. |
10 | Zhu Q G, Yang D X, Liu H Z, et al. Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction[J]. Angewandte Chemie International Edition, 2020, 59(23): 8896-8901. |
11 | Ma L, Haynes C J E, Grommet A B, et al. Coordination cages as permanently porous ionic liquids[J]. Nature Chemistry, 2020, 12(3): 270-275. |
12 | Singh S K, Savoy A W. Ionic liquids synthesis and applications: an overview[J]. Journal of Molecular Liquids, 2020, 297: 112038. |
13 | Asadi M, Kim K, Liu C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid[J]. Science, 2016, 353(6298): 467-470. |
14 | Makvandi P, Wang C Y, Zare E N, et al. Metal-based nanomaterials in biomedical applications: antimicrobial activity and cytotoxicity aspects[J]. Advanced Functional Materials, 2020, 30(22): 1910021. |
15 | Benlamri M, Wiltshire B D, Zhang Y, et al. High breakdown strength Schottky diodes made from electrodeposited ZnO for power electronics applications[J]. ACS Appl. Electron. Mater., 2019, 1(1): 13-17. |
16 | Ong C B, Ng L Y, Mohammad A W. A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 536-551. |
17 | Ren D, Gao J, Pan L F, et al. Atomic layer deposition of ZnO on CuO enables selective and efficient electroreduction of carbon dioxide to liquid fuels[J]. Angewandte Chemie International Edition, 2019, 58(42): 15036-15040. |
18 | Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide—from synthesis to application: a review[J]. Materials, 2014, 7(4): 2833-2881. |
19 | Richter J, Ruck M. Synthesis and dissolution of metal oxides in ionic liquids and deep eutectic solvents[J]. Molecules, 2019, 25(1): 78. |
20 | Prechtl M H G, Campbell P S. Metal oxide and bimetallic nanoparticles in ionic liquids: synthesis and application in multiphase catalysis[J]. Nanotechnology Reviews, 2013, 2(5): 577-595. |
21 | Abbott A P, Frisch G, Hartley J, et al. Processing of metals and metal oxides using ionic liquids[J]. Green Chemistry, 2011, 13(3): 471-481. |
22 | Casiello M, Catucci L, Fracassi F, et al. ZnO/ionic liquid catalyzed biodiesel production from renewable and waste lipids as feedstocks[J]. Catalysts, 2019, 9(1): 71. |
23 | Kaabeche O N E H, Zouaghi R, Boukhedoua S, et al. A comparative study on photocatalytic degradation of pyridinium - based ionic liquid by TiO2 and ZnO in aqueous solution[J]. International Journal of Chemical Reactor Engineering, 2019, 17(9): 20180253. |
24 | Yu W, Huang L, Yang D, et al. Efficiency exceeding 10% for inverted polymer solar cells with a ZnO/ionic liquid combined cathode interfacial layer[J]. Journal of Materials Chemistry A, 2015, 3(20): 10660-10665. |
25 | Azaceta E, Idigoras J, Echeberria J, et al. ZnO–ionic liquid hybrid films: electrochemical synthesis and application in dye-sensitized solar cells[J]. Journal of Materials Chemistry A, 2013, 1(35): 10173. |
26 | Zhang X H, Cui M Q, Nian L, et al. Ionic liquid-modified ZnO-based electron transport layer for inverted organic solar cells[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(15): 12678-12683. |
27 | Alavi-Tabari S A R, Khalilzadeh M A, Karimi-Maleh H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle[J]. Journal of Electroanalytical Chemistry, 2018, 811: 84-88. |
28 | Kaur N, Raj P, Singh A, et al. A facile route to ionic liquids-functionalized ZnO nanorods for the fluorometric sensing of thiabendazole drug[J]. Journal of Molecular Liquids, 2018, 261: 137-145. |
29 | Zaitsau D H, Emel'Yanenko V N, Stange P, et al. Dispersion and hydrogen bonding rule: why the vaporization enthalpies of aprotic ionic liquids are significantly larger than those of protic ionic liquids[J]. Angewandte Chemie International Edition, 2016, 55(38): 11682-11686. |
30 | Greaves T L, Drummond C J. Protic ionic liquids: properties and applications[J]. Chemical Reviews, 2008, 108(1): 206-237. |
31 | Wang H Y, Zhang L M, Wang J J, et al. The first evidence for unilamellar vesicle formation of ionic liquids in aqueous solutions[J]. Chemical Communications, 2013, 49(45): 5222-5224. |
32 | Cherian T, Nunes D R, Dane T G, et al. Supramolecular self-assembly of nanoconfined ionic liquids for fast anisotropic ion transport[J]. Advanced Functional Materials, 2019, 29(49): 1905054. |
33 | Xu Y J, Li T T, Peng C J, et al. Influence of C2-H of imidazolium-based ionic liquids on the interaction and vapor-liquid equilibrium of ethyl acetate + ethanol system: [Bmim]BF4vs [Bmmim]BF4[J]. Industrial & Engineering Chemistry Research, 2015, 54(36): 150827113216002. |
34 | Wang L, Chang L X, Zhao B, et al. Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids[J]. Inorganic Chemistry, 2008, 47(5): 1443-1452. |
35 | Rabieh S, Bagheri M. Effect of ionic liquid [C4mim]Cl on morphology of nanosized-zinc oxide[J]. Materials Letters, 2014, 122: 190-192. |
36 | Li X Q, Zhang J, Ju Z Y, et al. Facile synthesis of cellulose/ZnO aerogel with uniform and tunable nanoparticles based on ionic liquid and polyhydric alcohol[J]. ACS Sustainable Chem. Eng., 2018, 6(12): 16248-16254. |
37 | Gao R, Gao S, Wang P, et al. Ionic liquid assisted synthesis of snowflake ZnO for detection of NOx and sensing mechanism[J]. Sensors and Actuators B: Chemical, 2020, 303: 127085. |
38 | da Trindade L G, Minervino G B, Trench A B, et al. Influence of ionic liquid on the photoelectrochemical properties of ZnO particles[J]. Ceramics International, 2018, 44(9): 10393-10401. |
39 | Sabbaghan M, Shahvelayati A S, Bashtani S E. Synthesis and optical properties of ZnO nanostructures in imidazolium-based ionic liquids[J]. Solid State Sciences, 2012, 14(8): 1191-1195. |
40 | Yavari I, Mahjoub A R, Kowsari E, et al. Synthesis of ZnO nanostructures with controlled morphology and size in ionic liquids[J]. Journal of Nanoparticle Research, 2009, 11(4): 861-868. |
41 | Kowsari E, Abdpour S. In-situ functionalization of mesoporous hexagonal ZnO synthesized in task specific ionic liquid as a photocatalyst for elimination of SO2, NOx, and CO[J]. Journal of Solid State Chemistry, 2017, 256: 141-150. |
42 | da Trindade L G, Zanchet L, Trench A B, et al. Flower-like ZnO/ionic liquid composites: structure, morphology, and photocatalytic activity[J]. Ionics, 2019, 25(7): 3197-3210. |
43 | Kawai R S, Yada S, Yoshimura T. Surface adsorption and bulk properties of surfactants in quaternary-ammonium-salt-type amphiphilic monomeric and gemini ionic liquids[J]. Langmuir, 2020, 36(19): 5219-5226. |
44 | Lago S, Francisco M, Arce A, et al. Enhanced oil recovery with the ionic liquid trihexyl(tetradecyl)phosphonium chloride: a phase equilibria study at 75℃[J]. Energy & Fuels, 2013, 27(10): 5806-5810. |
45 | Alammar T, Mudring A V. Sonochemical synthesis of 0D, 1D, and 2D zinc oxide nanostructures in ionic liquids and their photocatalytic activity[J]. ChemSusChem, 2011, 4(12): 1796-1804. |
46 | Goharshadi E K, Abareshi M, Mehrkhah R, et al. Preparation, structural characterization, semiconductor and photoluminescent properties of zinc oxide nanoparticles in a phosphonium-based ionic liquid[J]. Materials Science in Semiconductor Processing, 2011, 14(1): 69-72. |
47 | Das S, Ghosh S. Fabrication of different morphologies of ZnO superstructures in presence of synthesized ethylammonium nitrate (EAN) ionic liquid: synthesis, characterization and analysis[J]. Dalton Transactions, 2013, 42(5): 1645-1656. |
48 | Zhao S, Zhang Y W, Zhou Y M, et al. Ionic liquid-assisted photochemical synthesis of ZnO/Ag2O heterostructures with enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2017, 410: 344-353. |
49 | Meenatchi B, Nandhine Deve K R, Manikandan A, et al. Protic ionic liquid assisted synthesis, structural, optical and magnetic properties of Mn-doped ZnO nanoparticles [J]. Adv. Sci. Eng. Med., 2016, 8(8): 653-659. |
50 | Liu Z, El Abedin S Z, Endres F. Dissolution of zinc oxide in a protic ionic liquid with the 1-methylimidazolium cation and electrodeposition of zinc from ZnO/ionic liquid and ZnO/ionic liquid-water mixtures[J]. Electrochemistry Communications, 2015, 58: 46-50. |
51 | Ogawa T, Takahashi K, Nagarkar S S, et al. Coordination polymer glass from a protic ionic liquid: proton conductivity and mechanical properties as an electrolyte[J]. Chemical Science, 2020, 11(20): 5175-5181. |
52 | Peric B, Sierra J, Martí E, et al. (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids[J]. Journal of Hazardous Materials, 2013, 261: 99-105. |
53 | 张锁江, 徐春明, 吕兴梅. 离子液体与绿色化学[M]. 北京: 科学出版社, 2009: 326-327. |
Zhang S J, Xu C M, Lyu X M. Ionic Liquids and Green Chemistry[M]. Beijing: Science Press, 2009: 326-327. | |
54 | Li Z H, Geßner A, Richters J P, et al. Hollow zinc oxide mesocrystals from an ionic liquid precursor (ILP)[J]. Advanced Materials, 2008, 20(7): 1279-1285. |
55 | Li Z H, Shkilnyy A, Taubert A. Room temperature ZnO mesocrystal formation in the hydrated ionic liquid precursor (ILP) tetrabutylammonium hydroxide[J]. Crystal Growth & Design, 2008, 8(12): 4526-4532. |
56 | Zou H, Luan Y X, Ge J H, et al. Synthesis of ZnO particles on zinc foil in ionic-liquid precursors[J]. CrystEngComm, 2011, 13(7): 2656. |
57 | Raula M, Biswas M, Mandal T K. Ionic liquid-based solvent-induced shape-tunable small-sized ZnO nanostructures with interesting optical properties and photocatalytic activities[J]. RSC Advances, 2014, 4(10): 5055. |
58 | Shahi S K, Kaur N, Shahi J S, et al. Investigation of morphologies, photoluminescence and photocatalytic properties of ZnO nanostructures fabricated using different basic ionic liquids[J]. Journal of Environmental Chemical Engineering, 2018, 6(3): 3718-3725. |
59 | Raiguel S, Dehaen W, Binnemans K. Stability of ionic liquids in Brønsted-basic media[J]. Green Chemistry, 2020, 22(16): 5225-5252. |
60 | Lv Y, Cui H S, Liu P L, et al. Functionalized multi-walled carbon nanotubes supported Ni-based catalysts for adiponitrile selective hydrogenation to 6-aminohexanenitrile and 1, 6-hexanediamine: switching selectivity with [Bmim]OH[J]. Journal of Catalysis, 2019, 372: 330-351. |
61 | Yuan J Y, Mecerreyes D, Antonietti M. Poly(ionic liquid)s: an update[J]. Progress in Polymer Science, 2013, 38(7): 1009-1036. |
62 | Yuan J Y, Antonietti M. Poly(ionic liquid)s: polymers expanding classical property profiles[J]. Polymer, 2011, 52(7): 1469-1482. |
63 | Naik N S, Padaki M, Déon S, et al. Novel poly (ionic liquid)-based anion exchange membranes for efficient and rapid acid recovery from industrial waste[J]. Chemical Engineering Journal, 2020, 401: 126148. |
64 | 钱文静, 袁超, 郭江娜, 等. 聚离子液体功能材料研究进展[J]. 化学学报, 2015, 73(4): 310-315. |
Qian W J, Yuan C, Guo J N, et al. A review of poly(ionic liquid)s based functional materials[J]. Acta Chimica Sinica, 2015, 73(4): 310-315. | |
65 | 钱文静, 郭江娜, 严锋. 功能化聚离子液体的设计合成及应用研究[J]. 高分子通报, 2015, (10): 94-104. |
Qian W J, Guo J N, Yan F. Design, synthesis and application of poly(ionic liquid)-based functional materials[J]. Polymer Bulletin, 2015, (10): 94-104. | |
66 | Qian W, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications[J]. Chemical Society Reviews, 2017, 46(4): 1124-1159. |
67 | Shaplov A S, Ponkratov D O, Vygodskii Y S. Poly(ionic liquid)s: synthesis, properties, and application[J]. Polymer Science Series B, 2016, 58(2): 73-142. |
68 | Muñoz-Bonilla A, Fernández-García M. Poly(ionic liquid)s as antimicrobial materials[J]. European Polymer Journal, 2018, 105: 135-149. |
69 | Atta A M, Al-Lohedan H A, Ezzat A O, et al. Synthesis of zinc oxide nanocomposites using poly (ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for water treatment[J]. Journal of Molecular Liquids, 2017, 236: 38-47. |
70 | Atta A M, Al-Lohedan H A, Ezzat A O. Synthesis of zinc oxide nanocomposites using poly(ionic liquid): US9468902[P]. 2016-10-18. |
71 | Dule M, Biswas M, Biswas Y, et al. Redox-active poly(ionic liquid)-engineered Ag nanoparticle-decorated ZnO nanoflower heterostructure: a reusable composite catalyst for photopolymerization into high-molecular-weight polymers[J]. Polymer, 2017, 133: 223-231. |
72 | Li R R, Cao J J, Huang Y R, et al. Polyionic liquids (PIL) promoted Ce doped ZnO for the photocatalytic degradation of rhodamine B (RhB)[J]. ChemistrySelect, 2019, 4(36): 10748-10755. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[5] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[6] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[7] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[8] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[9] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[10] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[11] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[12] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[13] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[14] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[15] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 303
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 520
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||