CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3728-3737.DOI: 10.11949/0438-1157.20201919
• Separation engineering • Previous Articles Next Articles
YAO Chuanyi(),ZHENG Zhenwei,TU Zhixian,LU Yinghua
Received:
2020-12-28
Revised:
2021-03-17
Online:
2021-07-05
Published:
2021-07-05
Contact:
YAO Chuanyi
通讯作者:
姚传义
作者简介:
姚传义(1969—),男,博士,副教授,基金资助:
CLC Number:
YAO Chuanyi, ZHENG Zhenwei, TU Zhixian, LU Yinghua. Separation of evodiamine and rutaecarpine with simulated moving bed chromatography[J]. CIESC Journal, 2021, 72(7): 3728-3737.
姚传义, 郑震玮, 涂志贤, 卢英华. 模拟移动床色谱分离吴茱萸碱和吴茱萸次碱[J]. 化工学报, 2021, 72(7): 3728-3737.
Add to citation manager EndNote|Ris|BibTeX
操作点 | 构型 | 切换周期/min | QI/(ml?min-1) | QE/(ml?min-1) | QF/(ml?min-1) | PE/% | PR/% |
---|---|---|---|---|---|---|---|
P1 | 22.5 | 2 | 0.55 | 0.5 | 99.5±0.2 | 94.4±0.2 | |
P2 | 22.5 | 2 | 0.60 | 0.5 | 99.4±0.3 | 95.8±0.2 | |
P3 | 22.5 | 2 | 0.65 | 0.5 | 99.1±0.2 | 95.9±0.1 | |
P4 | 22.5 | 2 | 0.70 | 0.5 | 98.9±0.2 | 96.0±0.2 | |
P5 | 22.5 | 2 | 0.75 | 0.5 | 98.2±0.3 | 96.1±0.3 | |
P6 | 24.48 | 2 | 0.78 | 0.55 | 99.6±0.3 | 99.4±0.2 | |
P7 | [1.16, 1.16, 1.68] | 23.75 | 2 | 0.80 | 0.62 | 99.6±0.2 | 99.7±0.1 |
Table 1 Operation conditions and product purities at different operation points
操作点 | 构型 | 切换周期/min | QI/(ml?min-1) | QE/(ml?min-1) | QF/(ml?min-1) | PE/% | PR/% |
---|---|---|---|---|---|---|---|
P1 | 22.5 | 2 | 0.55 | 0.5 | 99.5±0.2 | 94.4±0.2 | |
P2 | 22.5 | 2 | 0.60 | 0.5 | 99.4±0.3 | 95.8±0.2 | |
P3 | 22.5 | 2 | 0.65 | 0.5 | 99.1±0.2 | 95.9±0.1 | |
P4 | 22.5 | 2 | 0.70 | 0.5 | 98.9±0.2 | 96.0±0.2 | |
P5 | 22.5 | 2 | 0.75 | 0.5 | 98.2±0.3 | 96.1±0.3 | |
P6 | 24.48 | 2 | 0.78 | 0.55 | 99.6±0.3 | 99.4±0.2 | |
P7 | [1.16, 1.16, 1.68] | 23.75 | 2 | 0.80 | 0.62 | 99.6±0.2 | 99.7±0.1 |
过程 | ts/min | QF/(ml?min-1) | QE/(ml?min-1) | 各区带流量/(ml?min-1) | 各区带柱子数目 | ||||
---|---|---|---|---|---|---|---|---|---|
区带Ⅰ | 区带Ⅱ | 区带Ⅲ | 区带Ⅰ | 区带Ⅱ | 区带Ⅲ | ||||
SMB | 24.48 | 0.55 | 0.78 | 2.0 | 1.22 | 1.77 | 1 | 1 | 2 |
Varicol | 23.75 | 0.62 | 0.80 | 2.0 | 1.20 | 1.82 | 1.16 | 1.16 | 1.68 |
Table 2 Optimum operation conditions for the SMB and Varicol processes
过程 | ts/min | QF/(ml?min-1) | QE/(ml?min-1) | 各区带流量/(ml?min-1) | 各区带柱子数目 | ||||
---|---|---|---|---|---|---|---|---|---|
区带Ⅰ | 区带Ⅱ | 区带Ⅲ | 区带Ⅰ | 区带Ⅱ | 区带Ⅲ | ||||
SMB | 24.48 | 0.55 | 0.78 | 2.0 | 1.22 | 1.77 | 1 | 1 | 2 |
Varicol | 23.75 | 0.62 | 0.80 | 2.0 | 1.20 | 1.82 | 1.16 | 1.16 | 1.68 |
1 | 王宇轩, 石玉琼, 朱金花. 吴茱萸中吴茱萸碱和吴茱萸次碱的提取方法研究[J]. 化学研究, 2020, 31(4): 359-364. |
Wang Y X, Shi Y Q, Zhu J H. Study on the extraction methods of evodiamine and rutaecarpine from Evodia rutaecarpa[J]. Chemical Research, 2020, 31(4): 359-364. | |
2 | Zhang C, Fan X, Xu X, et al. Evodiamine induces caspase-dependent apoptosis and S phase arrest in human colon lovo cells[J]. Anti-Cancer Drugs, 2010, 21(8): 766-776. |
3 | Wang C, Li S, Wang M W. Evodiamine-induced human melanoma A375-S2 cell death was mediated by PI3K/Akt/caspase and Fas-L/NF-κB signaling pathways and augmented by ubiquitin-proteasome inhibition[J]. Toxicology in Vitro, 2010, 24(3): 898-904. |
4 | Yuan S M, Gao K, Wang D M, et al. Evodiamine improves congnitive abilities in SAMP8 and APP(swe)/PS1(ΔE9) transgenic mouse models of Alzheimer's disease[J]. Acta Pharmacologica Sinica, 2011, 32(3): 295-302. |
5 | Kobayashi Y, Nakano Y, Kizaki M, et al. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist[J]. Planta Medica, 2001, 67(7): 628-633. |
6 | Hung P H, Lin L C, Wang G J, et al. Inhibitory effect of evodiamine on aldosterone release by zona glomerulosa cells in male rats[J]. The Chinese Journal of Physiology, 2001, 44(2): 53-57. |
7 | Lee H S, Oh W K, Choi H C, et al. Inhibition of angiotensin Ⅱ receptor binding by quinolone alkaloids from Evodia rutaecarpa[J]. Phytotherapy Research, 1998, 12(3): 212-214. |
8 | Ueng Y F, Wang J J, Lin L C, et al. Induction of cytochrome P450-dependent monooxygenase in mouse liver and kidney by rutaecarpine, an alkaloid of the herbal drug Evodia rutaecarpa[J]. Life Sciences, 2001, 70(2): 207-217. |
9 | Hu C P, Xiao L, Deng H W, et al. The cardioprotection of rutaecarpine is mediated by endogenous calcitonin related-gene peptide through activation of vanilloid receptors in Guinea-pig hearts[J]. Planta Medica, 2002, 68(8): 705-709. |
10 | Iwata H, Tezuka Y, Kadota S, et al. Mechanism-based inactivation of human liver microsomal CYP3A4 by rutaecarpine and limonin from Evodia fruit extract[J]. Drug Metabolism and Pharmacokinetics, 2005, 20(1): 34-45. |
11 | 张起辉, 高慧媛, 吴立军, 等. 吴茱萸的化学成分[J]. 沈阳药科大学学报, 2005, 22(1): 12-14. |
Zhang Q H, Gao H Y, Wu L J, et al. Chemical constituents of Evodia rutaecarpa (Juss.) Benth[J]. Journal of Shenyang Pharmaceutical University, 2005, 22(1): 12-14. | |
12 | Liu R M, Chu X, Sun A L, et al. Preparative isolation and purification of alkaloids from the Chinese medicinal herb Evodia rutaecarpa (Juss.) Benth by high-speed counter-current chromatography[J]. Journal of Chromatography A, 2005, 1074(1/2): 139-144. |
13 | Shahmoradi A, Khosravi-Nikou M R, Aghajani M, et al. Mathematical modeling and optimization of industrial scale ELUXYL simulated moving bed (SMB)[J]. Separation and Purification Technology, 2020, 248: 116961. |
14 | Shen Y H, Fu Q, Zhang D H, et al. A systematic simulation and optimization of an industrial-scale p-xylene simulated moving bed process[J]. Separation and Purification Technology, 2018, 191: 48-60. |
15 | Li Y, Xu J, Yu W F, et al. Multi-objective optimization of sequential simulated moving bed for the purification of xylo-oligosaccharides[J]. Chemical Engineering Science, 2020, 211: 115279. |
16 | Tangpromphan P, Budman H, Jaree A. A simplified strategy to reduce the desorbent consumption and equipment installed in a three-zone simulated moving bed process for the separation of glucose and fructose[J]. Chemical Engineering and Processing-Process Intensification, 2018, 126: 23-37. |
17 | Yang Y, Lu K, Gong R J, et al. Separation of guaifenesin enantiomers by simulated moving bed process with four operation modes[J]. Adsorption, 2019, 25(6): 1227-1240. |
18 | Li L Y, Liu W X, Song D W, et al. Simulated moving bed purification for flavonoids from Tartary buckwheat shell[J]. Journal of Chromatographic Science, 2020, 58(4): 362-372. |
19 | Yao C Y, Chen J L, Lu Y H, et al. Construction of an asynchronous three-zone simulated-moving-bed chromatography and its application for the separation of vanillin and syringaldehyde[J]. Chemical Engineering Journal, 2018, 331: 644-651. |
20 | Toumi A, Hanisch F, Engell S. Optimal operation of continuous chromatographic processes: mathematical optimization of the VARICOL process[J]. Industrial & Engineering Chemistry Research, 2002, 41(17): 4328-4337. |
21 | Ludemann-Hombourger O, Nicoud R M, Bailly M. The “VARICOL” process: a new multicolumn continuous chromatographic process[J]. Separation Science and Technology, 2000, 35(12): 1829-1862. |
22 | Lin X J, Gong R J, Li J X, et al. Enantioseparation of racemic aminoglutethimide using asynchronous simulated moving bed chromatography[J]. Journal of Chromatography A, 2016, 1467: 347-355. |
23 | Yao C Y, Tang S K, Yao H M, et al. Study on the number of decision variables in design and optimization of Varicol process[J]. Computers & Chemical Engineering, 2014, 68: 114-122. |
24 | Zhang Z Y, Mazzotti M, Morbidelli M. Power feed operation of simulated moving bed units: changing flow-rates during the switching interval[J]. Journal of Chromatography A, 2003, 1006(1/2): 87-99. |
25 | Schramm H, Kienle A, Kaspereit M, et al. Improved operation of simulated moving bed processes through cyclic modulation of feed flow and feed concentration[J]. Chemical Engineering Science, 2003, 58(23/24): 5217-5227. |
26 | 姚传义. 异步切换的三区带模拟移动床: 105617714B[P]. 2017-05-31. |
Yao C Y. Three zone simulated moving bed with asynchronous switching: 105617714B[P]. 2017-05-31. | |
27 | Yao H M, Tian Y C, Tadé M O. Using wavelets for solving SMB separation process models[J]. Industrial & Engineering Chemistry Research, 2008, 47(15): 5585-5593. |
28 | Yao C Y, Jing K J, Ling X P, et al. Application of dodecahedron to describe the switching strategies of asynchronous simulated-moving-bed[J]. Computers & Chemical Engineering, 2017, 96: 69-74. |
29 | Pous-Torres S, Torres-Lapasió J R, García-Álvarez-coque M C. Performance of markers and the homologous series method for dead time estimation in reversed-phase liquid chromatography[J]. Journal of Liquid Chromatography & Related Technologies, 2009, 32(8): 1065-1083. |
30 | Cabooter D, Lynen F, Sandra P, et al. Total pore blocking as an alternative method for the on-column determination of the external porosity of packed and monolithic reversed-phase columns[J]. Journal of Chromatography A, 2007, 1157(1/2): 131-141. |
31 | Chung S F, Wen C Y. Longitudinal dispersion of liquid flowing through fixed and fluidized beds[J]. AIChE Journal, 1968, 14(6): 857-866. |
32 | Kim T H, Yi S C, Suh Y W, et al. Effect of ethanol content on mass-transfer parameters and HETP indexes of amino acids in a poly-4-vinylpyridine chromatography[J]. Journal of Liquid Chromatography & Related Technologies, 2011, 34(6): 456-475. |
33 | Mazzotti M, Storti G, Morbidelli M. Robust design of countercurrent adsorption separation processes (4): Desorbent in the feed[J]. AIChE Journal, 1997, 43(1): 64-72. |
34 | 姚传义. 数值分析[M]. 北京: 中国轻工业出版社, 2009: 177-187. |
Yao C Y. Numerical Analysis[M]. Beijing: China Light Industry Press, 2009: 177-187. | |
35 | Kurup A S, Subramani H J, Hidajat K, et al. Optimal design and operation of SMB bioreactor for sucrose inversion[J]. Chemical Engineering Journal, 2005, 108(1/2): 19-33. |
36 | Subramani H J, Zhang Z Y, Hidajat K, et al. Multiobjective optimization of simulated moving bed reactor and its modification—Varicol process[J]. The Canadian Journal of Chemical Engineering, 2004, 82(3): 590-598. |
37 | Toumi A, Engell S. Optimization-based control of a reactive simulated moving bed process for glucose isomerization[J]. Chemical Engineering Science, 2004, 59(18): 3777-3792. |
38 | Yu W F, Hidajat K, Ray A K. Optimal operation of reactive simulated moving bed and Varicol systems[J]. Journal of Chemical Technology & Biotechnology, 2003, 78(2/3): 287-293. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[6] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[7] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[8] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[9] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[10] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[11] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[12] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[13] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[14] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[15] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||