CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4665-4674.DOI: 10.11949/0438-1157.20210244
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xingchu HE(),Dezhen CHEN(),Zhenfei MEI,Batuer ADILI,Qing AN
Received:
2021-02-08
Revised:
2021-03-29
Online:
2021-09-05
Published:
2021-09-05
Contact:
Dezhen CHEN
贺兴处(),陈德珍(),梅振飞,阿迪力·巴吐尔null,安青
通讯作者:
陈德珍
作者简介:
贺兴处(1994—),男,硕士研究生,基金资助:
CLC Number:
Xingchu HE,Dezhen CHEN,Zhenfei MEI,Batuer ADILI,Qing AN. ReaxFF MD study on the pyrolysis of PE catalyzed by CaO and the effect of H2O on the catalytic process and mechanism analysis[J]. CIESC Journal, 2021, 72(9): 4665-4674.
贺兴处,陈德珍,梅振飞,阿迪力·巴吐尔null,安青. CaO催化PE热解及H2O对催化过程影响的ReaxFF MD研究与机理分析[J]. 化工学报, 2021, 72(9): 4665-4674.
Add to citation manager EndNote|Ris|BibTeX
体系 | PE(C300H602)单链/条 | CaO超晶胞(Ca545O544)/个 | H2O分子/个 |
---|---|---|---|
PE | 8 | — | — |
PE-H2O | 8 | — | 900 |
PE-CaO | 8 | 1 | — |
PE-CaO-H2O | 8 | 1 | 900 |
Table 1 Molecular composition of model system
体系 | PE(C300H602)单链/条 | CaO超晶胞(Ca545O544)/个 | H2O分子/个 |
---|---|---|---|
PE | 8 | — | — |
PE-H2O | 8 | — | 900 |
PE-CaO | 8 | 1 | — |
PE-CaO-H2O | 8 | 1 | 900 |
1 | 全球塑料垃圾达49亿吨热解处理技术成突破口[J]. 塑料科技, 2018, 46(8): 23. |
Global plastic waste reaches4.9 billion tons, pyrolysis treatment technology becomes a breakthrough[J]. Plastics Science and Technology, 2018, 46(8): 23. | |
2 | Anuar Sharuddin S D, Abnisa F, Wan Daud W M A, et al. A review on pyrolysis of plastic wastes[J]. Energy Conversion and Management, 2016, 115: 308-326. |
3 | Kunwar B, Cheng H N, Chandrashekaran S R, et al. Plastics to fuel: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 421-428. |
4 | Aguado J, Serrano D P, Escola J M. Fuels from waste plastics by thermal and catalytic processes: a review[J]. Industrial & Engineering Chemistry Research, 2008, 47(21): 7982-7992. |
5 | Artetxe M, Lopez G, Amutio M, et al. Light olefins from HDPE cracking in a two-step thermal and catalytic process[J]. Chemical Engineering Journal, 2012, 207/208: 27-34. |
6 | Chen D Z, Yin L J, Wang H, et al. Pyrolysis technologies for municipal solid waste: a review[J]. Waste Management, 2014, 34(12): 2466-2486. |
7 | Williams P T, Williams E A. Interaction of plastics in mixed-plastics pyrolysis[J]. Energy & Fuels, 1999, 13(1): 188-196. |
8 | Zhou C B, Fang W J, Xu W Y, et al. Characteristics and the recovery potential of plastic wastes obtained from landfill mining[J]. Journal of Cleaner Production, 2014, 80: 80-86. |
9 | Bajus M, Hájeková E. Thermal cracking of the model seven components mixed plastics into oils/waxes[J]. Petroleum & Coal, 2010, 52(3): 164-172. |
10 | Scott D S, Czernik S R, Piskorz J, et al. Fast pyrolysis of plastic wastes[J]. Energy & Fuels, 1990, 4(4): 407-411. |
11 | Liu X L, Li X X, Liu J, et al. Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics[J]. Polymer Degradation and Stability, 2014, 104: 62-70. |
12 | Al-Salem S M, Lettieri P. Kinetic study of high density polyethylene (HDPE) pyrolysis[J]. Chemical Engineering Research and Design, 2010, 88(12): 1599-1606. |
13 | Gaca P, Drzewiecka M, Kaleta W, et al. Catalytic degradation of polyethylene over mesoporous molecular sieve MCM-41 modified with heteropoly compounds[J]. Polish Journal of Environmental Studies, 2008, 17(1): 25-31. |
14 | Ratnasari D K, Nahil M A, Williams P T. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 631-637. |
15 | Zhang Y T, Ji G Z, Chen C S, et al. Liquid oils produced from pyrolysis of plastic wastes with heat carrier in rotary kiln[J]. Fuel Processing Technology, 2020, 206: 106455. |
16 | Arabiourrutia M, Elordi G, Lopez G, et al. Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 230-237. |
17 | Jha K K, Kannan T T M, Senthilvelan N. Optimization of catalytic pyrolysis process for change of plastic waste into fuel[J]. Materials Today: Proceedings, 2021, 39: 708-711. |
18 | Al-Salem S M, Antelava A, Constantinou A, et al. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW)[J]. Journal of Environmental Management, 2017, 197: 177-198. |
19 | Predel M, Kaminsky W. Pyrolysis of mixed polyolefins in a fluidised-bed reactor and on a pyro-GC/MS to yield aliphatic waxes[J]. Polymer Degradation and Stability, 2000, 70(3): 373-385. |
20 | Donaj P J, Kaminsky W, Buzeto F, et al. Pyrolysis of polyolefins for increasing the yield of monomers' recovery[J]. Waste Management, 2012, 32(5): 840-846. |
21 | Kaminsky W, Predel M, Sadiki A. Feedstock recycling of polymers by pyrolysis in a fluidised bed[J]. Polymer Degradation and Stability, 2004, 85(3): 1045-1050. |
22 | Qureshi M S, Oasmaa A, Pihkola H, et al. Pyrolysis of plastic waste: opportunities and challenges[J]. Journal of Analytical and Applied Pyrolysis, 2020, 152: 104804. |
23 | Joo H S, Guin J A. Continuous upgrading of a plastics pyrolysis liquid to an environmentally favorable gasoline range product[J]. Fuel Processing Technology, 1998, 57(1): 25-40. |
24 | Seth D, Sarkar A. Thermal pyrolysis of polypropylene: effect of reflux-condenser on the molecular weight distribution of products[J]. Chemical Engineering Science, 2004, 59(12): 2433-2445. |
25 | Bagri R, Williams P T. Catalytic pyrolysis of polyethylene[J]. Journal of Analytical and Applied Pyrolysis, 2002, 63(1): 29-41. |
26 | Chen Z Z, Zhang X R, Che L, et al. Effect of volatile reactions on oil production and composition in thermal and catalytic pyrolysis of polyethylene[J]. Fuel, 2020, 271: 117308. |
27 | Zheng Y W, Wang J D, Liu C, et al. Enhancing the aromatic hydrocarbon yield from the catalytic copyrolysis of xylan and LDPE with a dual-catalytic-stage combined CaO/HZSM-5 catalyst[J]. Journal of the Energy Institute, 2020, 93(5): 1833-1847. |
28 | Chen C, Jin Y Q, Chi Y. Effects of moisture content and CaO on municipal solid waste pyrolysis in a fixed bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 108-112. |
29 | Fan L L, Chen P, Zhang Y N, et al. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresource Technology, 2017, 225: 199-205. |
30 | Miandad R, Barakat M A, Rehan M, et al. Plastic waste to liquid oil through catalytic pyrolysis using natural and synthetic zeolite catalysts[J]. Waste Management, 2017, 69: 66-78. |
31 | Bai C, Liu L C, Sun H. Molecular dynamics simulations of methanol to olefin reactions in HZSM-5 zeolite using a ReaxFF force field[J]. The Journal of Physical Chemistry C, 2012, 116(12): 7029-7039. |
32 | Chen C, Zhao L L, Wu X, et al. Theoretical understanding of coal char oxidation and gasification using reactive molecular dynamics simulation[J]. Fuel, 2020, 260: 116300. |
33 | Su J, Fang C Q, Yang M N, et al. Catalytic pyrolysis of waste packaging polyethylene using AlCl3-NaCl eutectic salt as catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 274-281. |
34 | van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
35 | Knyazev V D. Effects of chain length on the rates of C–C bond dissociation in linear alkanes and polyethylene[J]. The Journal of Physical Chemistry A, 2007, 111(19): 3875-3883. |
36 | 同济大学. 全自动ReaxFF反应机理分析软件[简称:AutoRMA] V1.0: 2021SR0108488[P].2021-01-20. |
37 | Si T, Huang K, Lin Y Y, et al. ReaxFF study on the effect of CaO on cellulose pyrolysis[J]. Energy & Fuels, 2019, 33(11): 11067-11077. |
38 | Sandia National Laboratories. LAMMPS[EB/OL]. . |
39 | Pitman M C, van Duin A C T. Dynamics of confined reactive water in smectite clay-zeolite composites[J]. Journal of the American Chemical Society, 2012, 134(6): 3042-3053. |
40 | Paajanen A, Vaari J. High-temperature decomposition of the cellulose molecule: a stochastic molecular dynamics study[J]. Cellulose, 2017, 24(7): 2713-2725. |
41 | Bhoi S, Banerjee T, Mohanty K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136: 326-333. |
42 | Zhong Q F, Mao Q Y, Xiao J, et al. ReaxFF simulations of petroleum coke sulfur removal mechanisms during pyrolysis and combustion[J]. Combustion and Flame, 2018, 198: 146-157. |
43 | Zhang Z J, Guo L T, Zhang H Y, et al. Comparing product distribution and desulfurization during direct pyrolysis and hydropyrolysis of Longkou oil shale kerogen using reactive MD simulations[J]. International Journal of Hydrogen Energy, 2019, 44(47): 25335-25346. |
44 | Popov K V, Knyazev V D. Initial stages of the pyrolysis of polyethylene[J]. The Journal of Physical Chemistry A, 2015, 119(49): 11737-11760. |
45 | Liu Q Y, Hu C S, Peng B, et al. High H2/CO ratio syngas production from chemical looping co-gasification of biomass and polyethylene with CaO/Fe2O3 oxygen carrier[J]. Energy Conversion and Management, 2019, 199: 111951. |
46 | Zhang J L, Gu J T, Han Y, et al. Supercritical water oxidation vs supercritical water gasification: which process is better for explosive wastewater treatment?[J]. Industrial & Engineering Chemistry Research, 2015, 54(4): 1251-1260. |
47 | Zaker A, Chen Z, Zaheer-Uddin M, et al. Co-pyrolysis of sewage sludge and low-density polyethylene—a thermogravimetric study of thermo-kinetics and thermodynamic parameters[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104554. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[3] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[4] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[5] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[8] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[9] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[10] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[11] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[12] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[13] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[14] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[15] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||