CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4740-4749.DOI: 10.11949/0438-1157.20210453

• Separation engineering • Previous Articles     Next Articles

Process design and simulation of membrane separation coupled with CO2 electrocatalytic hydrogenation to formic acid

Yuanxin FANG(),Wu XIAO(),Xiaobin JIANG,Xiangcun LI,Gaohong HE,Xuemei WU()   

  1. College of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2021-04-06 Revised:2021-05-24 Online:2021-09-05 Published:2021-09-05
  • Contact: Wu XIAO,Xuemei WU

膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟

方远鑫(),肖武(),姜晓滨,李祥村,贺高红,吴雪梅()   

  1. 大连理工大学化工学院,辽宁 大连 116024
  • 通讯作者: 肖武,吴雪梅
  • 作者简介:方远鑫(1996—),男,硕士研究生,1412344644@qq.com
  • 基金资助:
    国家自然科学基金项目(21776034);国家自然科学基金创新研究群体项目(22021005)

Abstract:

The impact of CO2 on the climate is getting more and more serious. Converting it into formic acid can simultaneously realize resource utilization and carbon emission reduction. The current research of CO2 hydrogenation to formic acid is mainly to find high-performance catalysts, and process design is also indispensable for the industrialization of formic acid, but the process design of CO2 electrocatalytic hydrogenation to formic acid has not been reported yet. Using natural gas whose main components are H2 and CO2 to produce hydrogen pressure swing adsorption desorption gas as raw materials, a process of gas membrane separation coupled with CO2 electrocatalytic hydrogenation to produce 30000 t of formic acid per year was designed and simulated in Unisim Design process simulation software. Then the sensitivity analysis method was used to optimize the membrane electrode area, cathode potential, H2 membrane area, CO2 membrane area, distillation column pressure and reflux ratio. The unit cost of formic acid under the optimal scheme is 6.37 CNY/kg, which is 31.88% higher than the traditional Kemiral-Leonard (KL) process, but the proposed process can reduce 33300 t CO2 per year, which has important environmental significance. Finally, through cost analysis, three effective solutions are proposed from the three aspects of reactor life, cost and electricity price, which can reduce the production cost of formic acid to that of the traditional KL process.

Key words: reactor, CO2 electrocatalysis, mathematical modeling, process simulation, optimal design

摘要:

CO2对气候影响越来越严重,将其转化为甲酸能够同步实现资源化和碳减排。当前CO2加氢制甲酸的研究主要在于寻找高性能催化剂,而过程设计对甲酸实现工业化也不可或缺,但是CO2电催化加氢制甲酸的过程设计尚未见报道。利用主要成分为H2和CO2的天然气制氢变压吸附解吸气为原料,设计了气体膜分离耦合CO2电催化加氢年产3万吨甲酸的工艺,并在Unisim Design流程模拟软件中进行了模拟。随后利用灵敏度分析法对反应器中膜电极面积、阴极电势、H2膜面积、CO2膜面积、精馏塔压力和回流比等参数进行优化,在最优方案下甲酸的单位质量成本为6.37 CNY/kg,比传统的Kemiral-Leonard(KL)工艺高31.88%,但是所提出的工艺可以实现减排3.33万吨/年的CO2,具有重要的环境保护意义。最后通过成本分析,从反应器的寿命、成本和电价三个方面提出三种有效的解决方案,可以将甲酸生产成本降低到传统KL工艺的生产成本。

关键词: 反应器, CO2电催化, 数学模型, 过程模拟, 优化设计

CLC Number: