CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4740-4749.DOI: 10.11949/0438-1157.20210453
• Separation engineering • Previous Articles Next Articles
Yuanxin FANG(),Wu XIAO(),Xiaobin JIANG,Xiangcun LI,Gaohong HE,Xuemei WU()
Received:
2021-04-06
Revised:
2021-05-24
Online:
2021-09-05
Published:
2021-09-05
Contact:
Wu XIAO,Xuemei WU
通讯作者:
肖武,吴雪梅
作者简介:
方远鑫(1996—),男,硕士研究生,基金资助:
CLC Number:
Yuanxin FANG, Wu XIAO, Xiaobin JIANG, Xiangcun LI, Gaohong HE, Xuemei WU. Process design and simulation of membrane separation coupled with CO2 electrocatalytic hydrogenation to formic acid[J]. CIESC Journal, 2021, 72(9): 4740-4749.
方远鑫, 肖武, 姜晓滨, 李祥村, 贺高红, 吴雪梅. 膜分离耦合CO2电催化加氢制甲酸工艺的设计及模拟[J]. 化工学报, 2021, 72(9): 4740-4749.
Add to citation manager EndNote|Ris|BibTeX
组成 | 摩尔分数/% |
---|---|
H2 | 45 |
CO2 | 35 |
CH4 | 15 |
N2 | 5 |
Table 1 Feed gas composition
组成 | 摩尔分数/% |
---|---|
H2 | 45 |
CO2 | 35 |
CH4 | 15 |
N2 | 5 |
膜材料 | 膜透量/GPU | ||||
---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | N2 | |
PI | 300 | 20 | 2 | 1 | 1 |
PEO | 85 | 1000 | 20 | 15 | 15 |
Table 2 Membrane permeation data used in the process[32]
膜材料 | 膜透量/GPU | ||||
---|---|---|---|---|---|
H2 | CO2 | CO | CH4 | N2 | |
PI | 300 | 20 | 2 | 1 | 1 |
PEO | 85 | 1000 | 20 | 15 | 15 |
Fig.9 The influence of the pressure at the top of the pressurized distillation column on the recovery rate of formic acid and the mass fraction of formic acid
设备 | 成本 |
---|---|
CO2电催化反应器 | 1×104 CNY/m2 |
H2膜 | 1×104 CNY/m2 |
CO2膜 | 0.3×104 CNY/m2 |
压缩机 | 0.5×104 CNY/kW |
电 | 0.75 CNY/kWh |
循环水 | 0.19 CNY/t |
高压蒸汽 | 198 CNY/t |
Table 3 Key equipment and operating costs
设备 | 成本 |
---|---|
CO2电催化反应器 | 1×104 CNY/m2 |
H2膜 | 1×104 CNY/m2 |
CO2膜 | 0.3×104 CNY/m2 |
压缩机 | 0.5×104 CNY/kW |
电 | 0.75 CNY/kWh |
循环水 | 0.19 CNY/t |
高压蒸汽 | 198 CNY/t |
类型 | 消耗量 |
---|---|
电能 | 17217.78 kW |
冷却水 | 201.87 t/h |
水蒸气 | 31.40 kg/h |
Table 4 Utility consumption
类型 | 消耗量 |
---|---|
电能 | 17217.78 kW |
冷却水 | 201.87 t/h |
水蒸气 | 31.40 kg/h |
项目 | 数值 | 折旧年限 |
---|---|---|
98.03%(质量)甲酸产量/(万吨/年) | 3.06 | — |
CO2消耗量/(万吨/年) | 3.33 | — |
加压精馏塔/(万元/年) | 5.5 | 10年 |
常压精馏塔/(万元/年) | 4 | 10年 |
H2膜组件/(万元/年) | 180 | 5年 |
CO2膜组件/(万元/年) | 9 | 5年 |
压缩机/(万元/年) | 184.98 | 10年 |
CO2电催化反应器/(万元/年) | 8400 | 5000 h |
CO吸附装置/(万元/年) | 144.18 | 1年 |
反应器所需电能/(万元/年) | 9390.47 | — |
冷却水/(万元/年) | 32.22 | — |
饱和蒸汽/(万元/年) | 2.22 | — |
压缩机所需电能/(万元/年) | 1162.667 | — |
年度成本/(万元/年) | 19505.24 | — |
单位质量成本/(CNY/kg) | 6.37 | — |
Table 5 Economic evaluation
项目 | 数值 | 折旧年限 |
---|---|---|
98.03%(质量)甲酸产量/(万吨/年) | 3.06 | — |
CO2消耗量/(万吨/年) | 3.33 | — |
加压精馏塔/(万元/年) | 5.5 | 10年 |
常压精馏塔/(万元/年) | 4 | 10年 |
H2膜组件/(万元/年) | 180 | 5年 |
CO2膜组件/(万元/年) | 9 | 5年 |
压缩机/(万元/年) | 184.98 | 10年 |
CO2电催化反应器/(万元/年) | 8400 | 5000 h |
CO吸附装置/(万元/年) | 144.18 | 1年 |
反应器所需电能/(万元/年) | 9390.47 | — |
冷却水/(万元/年) | 32.22 | — |
饱和蒸汽/(万元/年) | 2.22 | — |
压缩机所需电能/(万元/年) | 1162.667 | — |
年度成本/(万元/年) | 19505.24 | — |
单位质量成本/(CNY/kg) | 6.37 | — |
19 | Jia C M, Dai Y H, Yang Y H, et al. A fluidized-bed model for NiMgW-catalyzed CO2 methanation[J]. Particuology, 2020, 49: 55-64. |
20 | Wang F H, Xie H P, Liu T, et al. Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential[J]. Applied Energy, 2020, 269: 115029. |
21 | Hatsukade T, Kuhl K P, Cave E R, et al. Insights into the electrocatalytic reduction of CO₂ on metallic silver surfaces[J]. Physical Chemistry Chemical Physics, 2014, 16(27): 13814-13819. |
22 | Wang H Z, Leung D Y C, Xuan J. Modeling of a microfluidic electrochemical cell for CO2 utilization and fuel production[J]. Applied Energy, 2013, 102: 1057-1062. |
23 | 周柒, 丁红蕾, 郭得通, 等. CO2催化氢化制清洁能源的研究进展及趋势[J]. 化工学报, 2020, 71(8): 3428-3443. |
Zhou Q, Ding H L, Guo D T, et al. Recent advances in catalytic methods of CO2 hydrogenation to clean energy[J]. CIESC Journal, 2020, 71(8): 3428-3443. | |
24 | Ma L, Fan S, Zhen D X, et al. Electrochemical reduction of CO2 in proton exchange membrane reactor: the function of buffer layer[J]. Industrial & Engineering Chemistry Research, 2017, 56(37): 10242-10250. |
25 | 刘得军, 刘鹤, 孟凡彬, 等. 基于VB和HYSYS的地下储气库地面井筒一体化压力计算系统[J]. 天然气工业, 2013, 33(10): 104-109. |
Liu D J, Liu H, Meng F B, et al. The VB-and HYSYS-based simulation integration of injection/withdrawal wellbore pressures with above-ground piping pressures in UGS facilities[J]. Natural Gas Industry, 2013, 33(10): 104-109. | |
26 | 金大天, 曹义鸣, 王丽娜, 等. HYSYS的二次开发及其在多组分气体膜分离过程模拟中的应用[J]. 膜科学与技术, 2012, 32(5): 87-91. |
Jin D T, Cao Y M, Wang Li N, et al. Secondary development of HYSYS and its application in the simulation of multi-component gas separation by membrane[J]. Membrane Science and Technology, 2012, 32(5): 87-91. | |
27 | Lock S S M, Lau K K, Ahmad F, et al. Modeling, simulation and economic analysis of CO2 capture from natural gas using cocurrent, countercurrent and radial crossflow hollow fiber membrane[J]. International Journal of Greenhouse Gas Control, 2015, 36: 114-134. |
28 | Huang W R, Jiang X B, He G H, et al. A novel process of H2/CO2 membrane separation of shifted syngas coupled with gasoil hydrogenation[J]. Processes, 2020, 8(5): 590. |
1 | 李志康, 商鲁伟, 聂苗苗, 等. G/O/W微分散体系实现甲酸/三辛胺-正辛醇体系萃取分离[J]. 化工学报, 2020, 71(9): 4219-4227. |
Li Z K, Shang L W, Nie M M, et al. Extraction of formic acid with G/O/W microdispersion system[J]. CIESC Journal, 2020, 71(9): 4219-4227. | |
29 | Chen W, He G H, Ge F L, et al. Effects of hydrophobicity of diffusion layer on the electroreduction of biomass derivatives in polymer electrolyte membrane reactors[J]. ChemSusChem, 2015, 8(2): 288-300. |
30 | 周天宇, 阮雪华, 陈博, 等. 利用氢气分离膜降低乙烯深冷系统制冷压缩机的功耗[J]. 化工进展, 2016, 35(5): 1555-1560. |
Zhou T Y, Ruan X H, Chen B, et al. Reducing refrigeration compressor power in chilling process of ethylene plant by using hydrogen separation membrane[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1555-1560. | |
31 | 肖永厚, 肖红岩, 李本源, 等. 基于Aspen Adsorption的氦气/甲烷吸附分离过程模拟优化[J]. 化工学报, 2019, 70(7): 2556-2563. |
2 | Loges B, Boddien A, Gärtner F, et al. Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials[J]. Topics in Catalysis, 2010, 53(13/14): 902-914. |
3 | Andrushkevich T V, Popova G Y, Danilevich E V, et al. A new gas-phase method for formic acid production: tests on a pilot plant[J]. Catalysis in Industry, 2014, 6(1): 17-24. |
4 | 易清风. 甲酸在钛基纳米多孔网状铂电极上的电化学氧化[J]. 化工学报, 2007, 58(2): 446-451. |
Yi Q F. Electrochemical oxidation of formic acid on novel titanium-supported nanoporous network platinum electrode[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(2): 446-451. | |
5 | Rostami L, Mohamad Gholy Nejad P, Vatani A. A numerical investigation of serpentine flow channel with different bend sizes in polymer electrolyte membrane fuel cells[J]. Energy, 2016, 97: 400-410. |
6 | Rizvandi O B, Yesilyurt S. A pseudo three-dimensional, two-phase, non-isothermal model of proton exchange membrane fuel cell[J]. Electrochimica Acta, 2019, 302: 180-197. |
7 | 张镇, 吴辉. 国内外质子交换膜燃料电池关键材料的性能和成本分析[J]. 电池工业, 2019, 23(6): 305-309, 326. |
Zhang Z, Wu H. A literature review on performance and cost analysis of key materials for PEMFC[J]. Chinese Battery Industry, 2019, 23(6): 305-309, 326. | |
8 | 温术来. 燃料电池的研究现状及进展[J]. 现代化工, 2019, 39(7): 66-70. |
Wen S L. Research status and progress of fuel cell[J]. Modern Chemical Industry, 2019, 39(7): 66-70. | |
9 | Aslam N M, Masdar M S, Kamarudin S K, et al. Overview on direct formic acid fuel cells (DFAFCs) as an energy sources[J]. APCBEE Procedia, 2012, 3: 33-39. |
10 | 闫国庆. 甲酸生产工艺技术及其市场应用探讨[J]. 企业技术开发, 2014, 33(3): 43-44. |
Yan G Q. Discussion on production technology market application of formic acid [J]. Technological Development of Enterprise, 2014, 33(3): 43-44. | |
11 | 宁忠培, 戴志谦, 李天文, 等. 甲酸生产工艺技术及应用[J]. 化学工程师, 2009, 23(4): 52-55. |
Ning Z P, Dai Z Q, Li T W, et al. Production processes of formic acid and its applications[J]. Chemical Engineer, 2009, 23(4): 52-55. | |
12 | Leonard J. Preparation of formic acid by hydrolysis of methyl formate: US4299981 A[P]. 1981-11-10. |
13 | Chua W X, da Cunha S, Rangaiah G P, et al. Design and optimization of Kemira-Leonard process for formic acid production[J]. Chemical Engineering Science: X, 2019, 2: 100021. |
14 | Hohenschutz H, Schmidt J E, Kiefer H, et al. Preparation of Fromic Acid: US4218568[P]. 1980-08-19. |
15 | Novita F J, Lee H Y, Lee M. Plantwide design for high-purity formic acid reactive distillation process with dividing wall column and external heat integration arrangements[J]. Korean Journal of Chemical Engineering, 2018, 35(4): 926-940. |
16 | 史建公, 刘志坚, 刘春生. 二氧化碳催化转化为甲酸的技术进展[J]. 中外能源, 2019, 24(4): 64-82. |
Shi J G, Liu Z J, Liu C S. Technology progress in catalytic conversion of carbon dioxide to formic acid[J]. Sino-Global Energy, 2019, 24(4): 64-82. | |
31 | Xiao Y H, Xiao H Y, Li B Y, et al. Optimization of helium/methane adsorption separation process based on Aspen adsorption simulation[J]. CIESC Journal, 2019, 70(7): 2556-2563. |
32 | Merkel T C, Zhou M J, Baker R W. Carbon dioxide capture with membranes at an IGCC power plant[J]. Journal of Membrane Science, 2012, 389: 441-450. |
33 | 张胜中, 张英, 范得权, 等. 炼厂氢制取燃料电池级氢气技术研究[J]. 现代化工, 2020, 40(3): 208-211. |
Zhang S Z, Zhang Y, Fan D Q, et al. Study on producing hydrogen for fuel cell from refinery hydrogen[J]. Modern Chemical Industry, 2020, 40(3): 208-211. | |
34 | Chen B, Yang T, Xiao W, et al. Conceptual design of pyrolytic oil upgrading process enhanced by membrane-integrated hydrogen production system[J]. Processes, 2019, 7(5): 284. |
35 | 周艳艳. 精馏—蒸汽渗透进行异丙醇脱水的响应面优化[D]. 大连: 大连理工大学, 2013. |
Zhou Y Y. Parameters optimization of isopropanol dehydration by hybrid distillation-vapor permeation process using response surface methodology[D]. Dalian: Dalian University of Technology, 2013. | |
17 | Wang W, Wang S P, Ma X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
18 | Preti D, Resta C, Squarcialupi S, et al. Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst[J]. Angewandte Chemie International Edition, 2011, 50(52): 12551-12554. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[3] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[4] | Yuyuan ZHENG, Zhiwei GE, Xiangyu HAN, Liang WANG, Haisheng CHEN. Progress and prospect of medium and high temperature thermochemical energy storage of calcium-based materials [J]. CIESC Journal, 2023, 74(8): 3171-3192. |
[5] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[6] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[7] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[8] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[9] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[10] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[11] | Shanghao LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of ternary-distillation sequence based on gradient boosting decision tree [J]. CIESC Journal, 2023, 74(5): 2075-2087. |
[12] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[13] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[14] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[15] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||