CIESC Journal ›› 2021, Vol. 72 ›› Issue (9): 4921-4930.DOI: 10.11949/0438-1157.20210041
• Energy and environmental engineering • Previous Articles Next Articles
Kang YAN1,3(),Song YANG1,3,Shoujun LIU1,2,3(),Chao YANG2,Huiling FAN2,3,Ju SHANGGUAN2,3
Received:
2021-01-08
Revised:
2021-04-23
Online:
2021-09-05
Published:
2021-09-05
Contact:
Shoujun LIU
演康1,3(),杨颂1,3,刘守军1,2,3(),杨超2,樊惠玲2,3,上官炬2,3
通讯作者:
刘守军
作者简介:
演康(1995—),男,硕士研究生,基金资助:
CLC Number:
Kang YAN, Song YANG, Shoujun LIU, Chao YANG, Huiling FAN, Ju SHANGGUAN. In-situ preparation of ZnO-based activated carbon desulfurizer from low-rank coal[J]. CIESC Journal, 2021, 72(9): 4921-4930.
演康, 杨颂, 刘守军, 杨超, 樊惠玲, 上官炬. 低阶煤原位制备ZnO基活性炭脱硫剂[J]. 化工学报, 2021, 72(9): 4921-4930.
Add to citation manager EndNote|Ris|BibTeX
工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Vad | Mad | Aad | FCad | Cad | Had | Oad① | Nad | Sad | |
31.57 | 22.16 | 7.24 | 39.03 | 47.54 | 4.61 | 16.97 | 0.61 | 0.87 |
Table 1 Industrial analysis and elemental analysis of WM
工业分析/% | 元素分析/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Vad | Mad | Aad | FCad | Cad | Had | Oad① | Nad | Sad | |
31.57 | 22.16 | 7.24 | 39.03 | 47.54 | 4.61 | 16.97 | 0.61 | 0.87 |
Fig.6 The breakthrough curves (a) and the breakthrough sulfur capacity (b) of the commercial activated carbon supported ZnO adsorbent and in-situ prepared ZnO activated carbon adsorbent
样品 | 比表面积/(m2/g) | 总孔/(cm3/g) | 微孔/(cm3/g) | 介孔/(cm3/g) | 介孔/总孔 |
---|---|---|---|---|---|
AC-20 | 913 | 0.47 | 0.37 | 0.10 | 0.21 |
WM-850-1-20 | 355 | 0.25 | 0.08 | 0.17 | 0.68 |
Table 2 Textural properties of AC-20 and WM-850-1-20
样品 | 比表面积/(m2/g) | 总孔/(cm3/g) | 微孔/(cm3/g) | 介孔/(cm3/g) | 介孔/总孔 |
---|---|---|---|---|---|
AC-20 | 913 | 0.47 | 0.37 | 0.10 | 0.21 |
WM-850-1-20 | 355 | 0.25 | 0.08 | 0.17 | 0.68 |
样品 | 比表面积/(m2/g) | 总孔/(cm3/g) | 微孔/(cm3/g) | 介孔/(cm3/g) | 介孔/总孔 |
---|---|---|---|---|---|
ACE-20 | 854 | 0.44 | 0.35 | 0.09 | 0.20 |
WME-850-1-20 | 302 | 0.20 | 0.05 | 0.15 | 0.75 |
Table 3 Textural properties of ACE-20 and WME-850-1-20
样品 | 比表面积/(m2/g) | 总孔/(cm3/g) | 微孔/(cm3/g) | 介孔/(cm3/g) | 介孔/总孔 |
---|---|---|---|---|---|
ACE-20 | 854 | 0.44 | 0.35 | 0.09 | 0.20 |
WME-850-1-20 | 302 | 0.20 | 0.05 | 0.15 | 0.75 |
1 | Rasi S, Läntelä J, Rintala J. Trace compounds affecting biogas energy utilisation—a review[J]. Energy Conversion and Management, 2011, 52(12): 3369-3375. |
2 | Rosso I, Galletti C, Bizzi M, et al. Zinc oxide sorbents for the removal of hydrogen sulfide from syngas[J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1688-1697. |
3 | Li L, Sun T H, Shu C H, et al. Low temperature H2S removal with 3-D structural mesoporous molecular sieves supported ZnO from gas stream[J]. Journal of Hazardous Materials, 2016, 311: 142-150. |
4 | Yang C, Wang J, Fan H L, et al. Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature[J]. Fuel, 2018, 215: 695-703. |
5 | Yang C, Wang J, Fan H L, et al. Activated carbon-assisted fabrication of cost-efficient ZnO/SiO2 desulfurizer with characteristic of high loadings and high dispersion[J]. Energy & Fuels, 2018, 32(5): 6064-6072. |
6 | 耿强. 熔渗法制备氧化锌基脱硫剂及其常温脱硫性能研究[D]. 太原: 太原理工大学, 2019. |
Geng Q. Study on preparation of zinc oxide-based desulfurizer by infiltration method and its desulfurization performance at room temperature[D]. Taiyuan: Taiyuan University of Technology, 2019. | |
7 | 胡佩雷, 徐华龙, 沈伟. 改性Zr-Na/zeolite双功能沸石脱除水溶液中氨氮和磷性能[J]. 精细化工, 2018, 35(9): 1601-1608. |
Hu P L, Xu H L, Shen W. Removal of ammonium and phosphate from aqueous solution by dual-functional Zr-Na modified zeolite[J]. Fine Chemicals, 2018, 35(9): 1601-1608. | |
8 | 李灿, 马福秋, 葛春元, 等. 改性介孔二氧化硅对硫化氢的吸附研究[J]. 中国环保产业, 2018(7): 39-42. |
Li C, Ma F Q, Ge C Y, et al. Study on adsorption of sulfureted hydrogen by metallic oxide modification and meso-porous silicon dioxide[J]. China Environmental Protection Industry, 2018(7): 39-42. | |
9 | 王爱民, 白妮, 张国涛, 等. 污泥-兰炭末基成型活性炭的制备及吸附性能研究[J]. 精细化工, 2017, 34(2): 207-213. |
Wang A M, Bai N, Zhang G T, et al. Study on preparation of pressed active carbon based on sewage sludge and fine semi-coke and properties of adsorption[J]. Fine Chemicals, 2017, 34(2): 207-213. | |
10 | Nguyen-Thanh D, Bandosz T J. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide[J]. Carbon, 2005, 43(2): 359-367. |
11 | Sun F G, Liu J, Chen H C, et al. Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. ACS Catalysis, 2013, 3(5): 862-870. |
12 | Bagreev A, Angel Menendez J, Dukhno I, et al. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide[J]. Carbon, 2004, 42(3): 469-476. |
13 | Li Y M, Liu X. Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor[J]. Materials Chemistry and Physics, 2014, 148(1/2): 380-386. |
14 | 宋华, 王璐, 张娇静, 等. 氧化铁改性活性炭的制备及其吸附脱硫性能[J]. 化工进展, 2013, 32(3): 639-644, 651. |
Song H, Wang L, Zhang J J, et al. Adsorption of H2S by iron oxide modified activate carbon[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 639-644, 651. | |
15 | 李芬, 张彦平, 杨莹, 等. 活性炭负载纳米ZnO的结构及常温脱除H2S的性能[J]. 硅酸盐学报, 2012, 40(6): 800-805. |
Li F, Zhang Y P, Yang Y, et al. Structure of activated carbon supported with nano-ZnO and its removal performance of H2S at room temperature[J]. Journal of the Chinese Ceramic Society, 2012, 40(6): 800-805. | |
16 | Boutillara Y, Tombeur J L, De Weireld G, et al. In-situ copper impregnation by chemical activation with CuCl2 and its application to SO2 and H2S capture by activated carbons[J]. Chemical Engineering Journal, 2019, 372: 631-637. |
17 | 申烨华, 李文超, 陈邦, 等. 氧化锌法制备活性炭: 106115699A[P]. 2016-11-16. |
Shen Y H, Li W C, Chen B, et al. Zinc oxide method for preparing activated carbon: 106115699A[P]. 2016-11-16. | |
18 | 黄文辉, 杨起, 唐修义, 等. 中国炼焦煤资源分布特点与深部资源潜力分析[J]. 中国煤炭地质, 2010, 22(5): 1-6. |
Huang W H, Yang Q, Tang X Y, et al. Distribution features of coal for coking resource in China and deep part potential analysis[J]. Coal Geology of China, 2010, 22(5): 1-6. | |
19 | 邢宝林, 黄光许, 谌伦建, 等. 高品质低阶煤基活性炭的制备与表征[J]. 煤炭学报, 2013, 38(S1): 217-222. |
Xing B L, Huang G X, Chen L J, et al. Preparation and characterization of high quality low-rank coal based activated carbon[J]. Journal of China Coal Society, 2013, 38(S1): 217-222. | |
20 | 王秀芳, 田勇, 张会平. 高比表面积煤质活性炭的制备与活化机理[J]. 化工学报, 2009, 60(3): 733-737. |
Wang X F, Tian Y, Zhang H P. Preparation and activation mechanism of high specific surface area coal-based activated carbon[J]. CIESC Journal, 2009, 60(3): 733-737. | |
21 | Yang C, Yang S, Fan H L, et al. Tuning the ZnO-activated carbon interaction through nitrogen modification for enhancing the H2S removal capacity[J]. Journal of Colloid and Interface Science, 2019, 555: 548-557. |
22 | 解强, 姚鑫, 杨川, 等. 压块工艺条件下煤种对活性炭孔结构发育的影响[J]. 煤炭学报, 2015, 40(1): 196-202. |
Xie Q, Yao X, Yang C, et al. Effect of coalification degree of coals on the porosity of coal-based granular activated carbon prepared by briquetting method[J]. Journal of China Coal Society, 2015, 40(1):196-202. | |
23 | 易牡丹, 丘克强. 由酚醛树脂基板CO2活化法制备高性能活性炭[J]. 应用化工, 2012, 41(7): 1127-1131. |
Yi M D, Qiu K Q. Preparation of high-properties activated carbon from phenolic resin laminated board with CO2 activation[J]. Applied Chemical Industry, 2012, 41(7): 1127-1131. | |
24 | Shi R H, Zhang Z R, Fan H L, et al. Cu-based metal-organic framework/activated carbon composites for sulfur compounds removal[J]. Applied Surface Science, 2017, 394: 394-402. |
25 | 邵纯红, 孙曙光, 张爽, 等. 纳米CuO/ZnO去除H2S反应条件及机理研究[J]. 化学工程师, 2010, 24(2): 13-15. |
Shao C H, Sun S G, Zhang S, et al. Reaction condition and mechanism research with nano CuO/ZnO to remove H2S[J]. Chemical Engineer, 2010, 24(2): 13-15. | |
26 | Zhang R P, Wang Y, Jia M Q, et al. One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries[J]. Applied Surface Science, 2018, 437: 375-383. |
27 | Hao X Q, Wang Y C, Zhou J, et al. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 221: 302-311. |
28 | Yang C, Wang Y S, Fan H L, et al. Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation[J]. Applied Catalysis B: Environmental, 2020, 266: 118674. |
29 | Brazhnyk D V, Zaitsev Y P, Bacherikova I V, et al. Oxidation of H2S on activated carbon KAU and influence of the surface state[J]. Applied Catalysis B: Environmental, 2007, 70(1/2/3/4): 557-566. |
30 | 谭小耀, 吴迪镛, 袁权. 浸渍活性炭脱硫过程中孔结构及气体湿度的影响[J]. 化工学报, 1997, 48(2): 237-240. |
Tan X Y, Wu D Y, Yuan Q. Influence of the pore structure and gas humidity on desulfurization by impregnated activated carbon[J]. Journal of Chemical Industry and Engineering (China), 1997, 48(2): 237-240. | |
31 | 李芬. 纳米锌基脱硫剂室温脱硫效能及再生研究[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
Li F. Study on desulfurization performance at ambient temperature and regeneration of nanocrystalline zinc-base sorbent[D]. Harbin: Harbin Institute of Technology, 2007. | |
32 | Wang L J, Fan H L, Shangguan J, et al. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21167-21177. |
[1] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[2] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[3] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[4] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[5] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[8] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[9] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[10] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[11] | Tianhao BAI, Xiaowen WANG, Mengzi YANG, Xinwei DUAN, Jie MI, Mengmeng WU. Study on release and inhibition behavior of COS during high-temperature gas desulfurization process using Zn-based oxide derived from hydrotalcite [J]. CIESC Journal, 2023, 74(4): 1772-1780. |
[12] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[13] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[14] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[15] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||