CIESC Journal ›› 2021, Vol. 72 ›› Issue (S1): 554-559.DOI: 10.11949/0438-1157.20201576
• Material science and engineering, nanotechnology • Previous Articles Next Articles
LUO Weili(),WANG Wenwen,PAN Quanwen(),GE Tianshu,WANG Ruzhu
Received:
2020-11-03
Revised:
2021-02-01
Online:
2021-06-20
Published:
2021-06-20
Contact:
PAN Quanwen
通讯作者:
潘权稳
作者简介:
罗伟莉(1983—),女,硕士,助理工程师,基金资助:
CLC Number:
LUO Weili, WANG Wenwen, PAN Quanwen, GE Tianshu, WANG Ruzhu. Heat storage performance of composite adsorbent with activated carbon fiber[J]. CIESC Journal, 2021, 72(S1): 554-559.
罗伟莉, 王雯雯, 潘权稳, 葛天舒, 王如竹. 基于活性碳纤维毡复合吸附剂的储热性能[J]. 化工学报, 2021, 72(S1): 554-559.
Add to citation manager EndNote|Ris|BibTeX
样品 | ACF占比/% | SS占比/% | LiCl占比/% |
---|---|---|---|
ACFLi20 | 0.096 | 0.654 | 0.250 |
ACFLi30 | 0.080 | 0.587 | 0.333 |
ACFLi40 | 0.079 | 0.533 | 0.388 |
Table 1 Salt content of different composite samples
样品 | ACF占比/% | SS占比/% | LiCl占比/% |
---|---|---|---|
ACFLi20 | 0.096 | 0.654 | 0.250 |
ACFLi30 | 0.080 | 0.587 | 0.333 |
ACFLi40 | 0.079 | 0.533 | 0.388 |
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 孔径/nm |
---|---|---|---|
ACF[ | 1380.64 | 0.55 | 1.58 |
ACFLi30 | 124.22 | 0.11 | 1.79 |
Table 2 Pore characteristics of composite samples
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 孔径/nm |
---|---|---|---|
ACF[ | 1380.64 | 0.55 | 1.58 |
ACFLi30 | 124.22 | 0.11 | 1.79 |
样品 | 表观密度/(kg/m3) | 热导率/ (W/(m?K)) | 热扩散系数/(mm2/s) | 比热容/ (MJ/(m3?K)) |
---|---|---|---|---|
ACF | 80~85 | 0.0694 | 0.3630 | 0.1912 |
ACFLi30 | 543.3 | 0.5649 | 0.1806 | 3.1280 |
Table 3 Thermal properties of composite samples
样品 | 表观密度/(kg/m3) | 热导率/ (W/(m?K)) | 热扩散系数/(mm2/s) | 比热容/ (MJ/(m3?K)) |
---|---|---|---|---|
ACF | 80~85 | 0.0694 | 0.3630 | 0.1912 |
ACFLi30 | 543.3 | 0.5649 | 0.1806 | 3.1280 |
样品 | 质量储热密度/(kW·h/kg) | 体积储热密度/(kW·h/m3) |
---|---|---|
ACFLi30 | 1.08 | 588.2 |
EVM-LiCl[ | 1.21 | 171.6 |
EVM-LiCl[ | 0.72 | 253 |
AA-LiCl[ | 0.29 | 318.3 |
Table 4 Heat storage properties of different composite adsorbents
样品 | 质量储热密度/(kW·h/kg) | 体积储热密度/(kW·h/m3) |
---|---|---|
ACFLi30 | 1.08 | 588.2 |
EVM-LiCl[ | 1.21 | 171.6 |
EVM-LiCl[ | 0.72 | 253 |
AA-LiCl[ | 0.29 | 318.3 |
1 | 闫霆, 王文欢, 王程遥. 化学储热技术的研究现状及进展[J]. 化工进展, 2018, 37(12): 4586-4595. |
Yan T, Wang W H, Wang C Y. Research situation and progress on chemical heat storage technology [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4586-4595. | |
2 | Palomba V, Frazzica A. Recent advancements in sorption technology for solar thermal energy storage applications [J]. Solar Energy, 2019, 192: 69-105. |
3 | 李琳, 黄宏宇, 邓立生, 等. 低品位能源化学储热材料研究进展[J]. 化工进展, 2020, 39(9): 3608-3616. |
Li L, Huang H Y, Deng L S, et al. Research progress of low-grade energy chemical heat storage materials [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3608-3616. | |
4 | Lim K, Kim J, Lee J. Comparative study on adsorbent characteristics for adsorption thermal energy storage system [J]. International Journal of Energy Research, 2019, 43(9): 4281-4294. |
5 | Zhang Y N, Wang R Z, Li T X. Sorption Thermal Energy Storage [M]// Wang R Z, Zhai X Q. Handbook of Energy Systems in Green Buildings. Berlin: Springer Berlin Heidelberg, 2018: 1109-1161. |
6 | Sun B C, Chakraborty A. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications [J]. Applied Physics Letters, 2014, 104(20): 201901. |
7 | Sun B C, Chakraborty A. Thermodynamic frameworks of adsorption kinetics modeling: dynamic water uptakes on silica gel for adsorption cooling applications [J]. Energy, 2015, 84: 296-302. |
8 | van Alebeek R, Scapino L, Beving M A J M, et al. Investigation of a household-scale open sorption energy storage system based on the zeolite 13X/water reacting pair [J]. Applied Thermal Engineering, 2018, 139: 325-333. |
9 | Wang R Z, Wang Q B. Adsorption mechanism and improvements of the adsorption equation for adsorption refrigeration pairs [J]. International Journal of Energy Research, 1999, 23(10): 887-898. |
10 | Zheng X, Wang R Z, Ge T S, et al. Performance study of SAPO-34 and FAPO-34 desiccants for desiccant coated heat exchanger systems [J]. Energy, 2015, 93, Part 1: 88-94. |
11 | Kohler T, Hinze M, Müller K, et al. Temperature independent description of water adsorption on zeotypes showing a type V adsorption isotherm [J]. Energy, 2017, 135: 227-236. |
12 | Brancato V, Frazzica A. Characterisation and comparative analysis of zeotype water adsorbents for heat transformation applications [J]. Solar Energy Materials and Solar Cells, 2018, 180: 91-102. |
13 | Teo H W B, Chakraborty A, Kayal S. Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption [J]. Applied Thermal Engineering, 2017, 120: 453-462. |
14 | Wang S J, Lee J S, Wahiduzzaman M, et al. A robust large-pore zirconium carboxylate metal-organic framework for energy-efficient water-sorption-driven refrigeration [J]. Nature Energy, 2018, 3(11): 985-993. |
15 | Cui S Q, Qin M H, Marandi A, et al. Metal-organic frameworks as advanced moisture sorbents for energy-efficient high temperature cooling [J]. Scientific Reports, 2018, 8(1): 15284. |
16 | Li R Y, Shi Y, Wu M C, et al. Photovoltaic panel cooling by atmospheric water sorption-evaporation cycle [J]. Nature Sustainability, 2020, 3(8): 636-643. |
17 | Yu N, Wang R Z, Wang L W. Sorption thermal storage for solar energy [J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514. |
18 | Lehmann C, Kolditz O, Nagel T. Modelling sorption equilibria and kinetics in numerical simulations of dynamic sorption experiments in packed beds of salt/zeolite composites for thermochemical energy storage [J]. International Journal of Heat and Mass Transfer, 2019, 128: 1102-1113. |
19 | 张艳楠, 王如竹, 李廷贤. 蛭石/氯化钙复合吸附剂的吸附特性和储热性能[J]. 化工学报, 2018, 69(1): 363-370. |
Zhang Y N, Wang R Z, Li T X. Sorption characteristics and thermal storage performance of expanded vermiculite/CaCl2 composite sorbent [J]. CIESC Journal, 2018, 69(1): 363-370. | |
20 | Zhang Y N, Wang R Z, Li T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage [J]. Energy, 2018, 156: 240-249. |
21 | 刘华, 彭佳杰, 余凯, 等. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J]. 化工学报, 2020, 71(7): 3354-3361. |
Liu H, Peng J J, Yu K, et al. Preparation and thermal storage performance of novel composite sorbent with activated alumina matrix [J]. CIESC Journal, 2020, 71(07): 3354-3361. | |
22 | 赵惠忠, 程俊峰, 唐祥虎, 等. 多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能试验[J]. 化工学报, 2017, 68(5): 1860-1865 |
Zhao H Z, Cheng J F, Tang X H, et al. Performance of multi wall carbon nanotubes embedded 13X/MgCl2 composite adsorbent [J]. CIESC Journal, 2017, 68(5): 1860-1865. | |
23 | Brancato V, Gordeeva L G, Grekova A D, et al. Water adsorption equilibrium and dynamics of LiCl/MWCNT/PVA composite for adsorptive heat storage [J]. Solar Energy Materials and Solar Cells, 2019, 193: 133-140. |
24 | D'ans P, Courbon E, Permyakova A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application [J]. Journal of Energy Storage, 2019, 25: 100881. |
25 | Wang J Y, Wang R Z, Wang L W, et al. A high efficient semi-open system for fresh water production from atmosphere [J]. Energy, 2017, 138: 542-551. |
26 | 陈金妹, 张健. ASAP2020比表面积及孔隙分析仪的应用[J]. 分析仪器, 2009, (3): 61-64. |
Chen J M, Zhang J. Application of ASAP specific surface area and pore analyzer [J]. Analytical Instrumentation, 2009, (3): 61-64. | |
27 | 肖红俊, 于帆, 张欣欣. 瞬态平面热源法测量材料热导率[J]. 北京科技大学学报, 2012, 34(12): 1432-1436. |
Xiao H J, Yu F, Zhang X X. Thermal conductivity measurement of materials based on a transient hot-plane method [J]. Journal of University of Science and Technology Beijing, 2012, 34(12): 1432-1436. | |
28 | 王佳韵. 基于复合活性炭纤维材料的吸附式空气取水原理与系统[D]. 上海: 上海交通大学, 2018. |
Wang J Y. Research on principle and system of atmosphere water harvesting unit based on active carbon fiber composite material [D]. Shanghai: Shanghai Jiao Tong University, 2018. | |
29 | Zhang Y N, Wang R Z, Li T X, et al. Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage [J]. Energies, 2016, 9(10): 854-869. |
30 | Grekova A D, Gordeeva L G, Aristov Y I. Composite “LiCl/vermiculite” as advanced water sorbent for thermal energy storage [J]. Applied Thermal Engineering, 2017, 124: 1401-1408. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[3] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[4] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[5] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[6] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[7] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[8] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[9] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[10] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[11] | Chuanbao XIAO, Linyang LI, Wufeng LIU, Nianbing ZHONG, Quanhua XIE, Dengjie ZHONG, Haixing CHANG. Effective removal of 2,4,6-trichlorophenol by coupling photocatalysis with ion exchange adsorption [J]. CIESC Journal, 2023, 74(4): 1587-1597. |
[12] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[13] | Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160. |
[14] | Xiaowan PENG, Xiaonan GUO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry [J]. CIESC Journal, 2023, 74(2): 784-795. |
[15] | Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||