1 |
Hussain I, Jalil A A, Fatah N A A, et al. A highly competitive system for CO methanation over an active metal-free fibrous silica mordenite viain situ ESR and FTIR studies[J]. Energy Conversion and Management, 2020, 211: 112754.
|
2 |
Han Y H, Quan Y H, Hao P P, et al. Highly anti-sintering and anti-coking ordered mesoporous silica carbide supported nickel catalyst for high temperature CO methanation[J]. Fuel, 2019, 257: 116006.
|
3 |
Liu Q, Zhong Z Y, Gu F N, et al. CO methanation on ordered mesoporous Ni-Cr-Al catalysts: effects of the catalyst structure and Cr promoter on the catalytic properties[J]. Journal of Catalysis, 2016, 337: 221-232.
|
4 |
Mills G A, Steffgen F W. Catalytic methanation[J]. Catalysis Reviews, 1974, 8(1): 159-210.
|
5 |
Meng F H, Li Z, Liu J, et al. Effect of promoter Ce on the structure and catalytic performance of Ni/Al2O3 catalyst for CO methanation in slurry-bed reactor[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 250-258.
|
6 |
Zhang J Y, Xin Z, Meng X, et al. Synthesis, characterization and properties of anti-sintering nickel incorporated MCM-41 methanation catalysts[J]. Fuel, 2013, 109: 693-701.
|
7 |
Ren J, Li H D, Jin Y Y, et al. Silica/titania composite-supported Ni catalysts for CO methanation: effects of Ti species on the activity, anti-sintering, and anti-coking properties[J]. Applied Catalysis B: Environmental, 2017, 201: 561-572.
|
8 |
Zhang J Y, Xin Z, Meng X, et al. Effect of MoO3 on structures and properties of Ni-SiO2 methanation catalysts prepared by the hydrothermal synthesis method[J]. Industrial & Engineering Chemistry Research, 2013, 52(41): 14533-14544.
|
9 |
Lv Y H, Xin Z, Meng X, et al. Essential role of organic additives in preparation of efficient Ni/KIT-6 catalysts for CO methanation[J]. Applied Catalysis A: General, 2018, 558: 99-108.
|
10 |
Li S S, Gong D D, Tang H G, et al. Preparation of bimetallic Ni@Ru nanoparticles supported on SiO2 and their catalytic performance for CO methanation[J]. Chemical Engineering Journal, 2018, 334: 2167-2178.
|
11 |
Lv Y H, Xin Z, Meng X, et al. Ni based catalyst supported on KIT-6 silica for CO methanation: confinement effect of three dimensional channel on NiO and Ni particles[J]. Microporous and Mesoporous Materials, 2018, 262: 89-97.
|
12 |
Bian Z C, Xin Z, Meng X, et al. Effect of citric acid on the synthesis of CO methanation catalysts with high activity and excellent stability[J]. Industrial & Engineering Chemistry Research, 2017, 56(9): 2383-2392.
|
13 |
Bai X B, Wang S, Sun T J, et al. Influence of operating conditions on carbon deposition over a Ni catalyst for the production of synthetic natural gas (SNG) from coal[J]. Catalysis Letters, 2014, 144(12): 2157-2166.
|
14 |
Rostrup-Nielsen J R, Pedersen K, Sehested J. High temperature methanation: sintering and structure sensitivity[J]. Applied Catalysis A: General, 2007, 330: 134-138.
|
15 |
Simonsen S B, Chorkendorff I, Dahl S, et al. Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM[J]. Journal of the American Chemical Society, 2010, 132(23): 7968-7975.
|
16 |
Simonsen S B, Chorkendorff I, Dahl S, et al. Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM[J]. Journal of Catalysis, 2011, 281(1): 147-155.
|
17 |
Trimm D L. Catalysts for the control of coking during steam reforming[J]. Catalysis Today, 1999, 49(1/2/3): 3-10.
|
18 |
Rönsch S, Schneider J, Matthischke S, et al. Review on methanation—from fundamentals to current projects[J]. Fuel, 2016, 166: 276-296.
|
19 |
Tao M, Xin Z, Meng X, et al. Impact of double-solvent impregnation on the Ni dispersion of Ni/SBA-15 catalysts and catalytic performance for the syngas methanation reaction[J]. RSC Advances, 2016, 6(42): 35875-35883.
|
20 |
Cao H X, Zhang J, Guo C L, et al. Modifying surface properties of KIT-6 zeolite with Ni and V for enhancing catalytic CO methanation[J]. Applied Surface Science, 2017, 426: 40-49.
|
21 |
Cao H X, Zhang J, Guo C L, et al. Highly dispersed Ni nanoparticles on 3D-mesoporous KIT-6 for CO methanation: effect of promoter species on catalytic performance[J]. Chinese Journal of Catalysis, 2017, 38(7): 1127-1137.
|
22 |
王昱涵, 白思雨, 崔丽杰, 等. Ni-Mo双金属催化剂的甲烷化性能与耐硫稳定性[J]. 化工学报, 2018, 69(5): 2063-2072.
|
|
Wang Y H, Bai S Y, Cui L J, et al. Catalytic activity and sulfur-resistance stability of Ni-Mo-based catalysts for syngas methanation[J]. CIESC Journal, 2018, 69(5): 2063-2072.
|
23 |
Peng H G, Ying J W, Zhang J Y, et al. La-doped Pt/TiO2 as an efficient catalyst for room temperature oxidation of low concentration HCHO[J]. Chinese Journal of Catalysis, 2017, 38(1): 39-47.
|
24 |
Liu Y, Sheng W, Hou Z G, et al. Homogeneous and highly dispersed Ni-Ru on a silica support as an effective CO methanation catalyst[J]. RSC Advances, 2018, 8(4): 2123-2131.
|
25 |
Konishcheva M V, Potemkin D I, Snytnikov P V, et al. The insights into chlorine doping effect on performance of ceria supported nickel catalysts for selective CO methanation[J]. Applied Catalysis B: Environmental, 2018, 221: 413-421.
|
26 |
Winter L R, Gomez E, Yan B H, et al. Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation[J]. Applied Catalysis B: Environmental, 2018, 224: 442-450.
|
27 |
Rombi E, Cutrufello M G, Atzori L, et al. CO methanation on Ni-Ce mixed oxides prepared by hard template method[J]. Applied Catalysis A: General, 2016, 515: 144-153.
|
28 |
Ai H M, Yang H Y, Liu Q, et al. ZrO2-modified Ni/LaAl11O18 catalyst for CO methanation: effects of catalyst structure on catalytic performance[J]. Chinese Journal of Catalysis, 2018, 39(2): 297-308.
|
29 |
Guo C L, Wu Y Y, Qin H Y, et al. CO methanation over ZrO2/Al2O3 supported Ni catalysts: a comprehensive study[J]. Fuel Processing Technology, 2014, 124: 61-69.
|
30 |
Liu Q, Gu F N, Gao J J, et al. Coking-resistant Ni-ZrO2/Al2O3 catalyst for CO methanation[J]. Journal of Energy Chemistry, 2014, 23(6): 761-770.
|
31 |
Hong E, Bang S, Cho J H, et al. Reductive amination of isopropanol to monoisopropylamine over Ni-Fe/γ-Al2O3 catalysts: synergetic effect of Ni-Fe alloy formation[J]. Applied Catalysis A: General, 2017, 542: 146-153.
|
32 |
Kustov A L, Frey A M, Larsen K E, et al. CO methanation over supported bimetallic Ni-Fe catalysts: from computational studies towards catalyst optimization[J]. Applied Catalysis A: General, 2007, 320: 98-104.
|
33 |
Meng F H, Zhong P Z, Li Z, et al. Surface structure and catalytic performance of Ni-Fe catalyst for low-temperature CO hydrogenation[J]. Journal of Chemistry, 2014, 2014: 1-7.
|
34 |
Tian D Y, Liu Z H, Li D D, et al. Bimetallic Ni-Fe total-methanation catalyst for the production of substitute natural gas under high pressure[J]. Fuel, 2013, 104: 224-229.
|
35 |
Wang H, Zhang J F, Bai Y X, et al. NiO@SiO2 core-shell catalyst for low-temperature methanation of syngas in slurry reactor[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 548-556.
|
36 |
Zhang J F, Bai Y X, Zhang Q D, et al. Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods[J]. Fuel, 2014, 132: 211-218.
|
37 |
Mesa M, Sierra L, Patarin J, et al. Morphology and porosity characteristics control of SBA-16 mesoporous silica. Effect of the triblock surfactant Pluronic F127 degradation during the synthesis[J]. Solid State Sciences, 2005, 7(8): 990-997.
|
38 |
Laosiripojana N, Assabumrungrat S. Catalytic steam reforming of ethanol over high surface area CeO2: the role of CeO2 as an internal pre-reforming catalyst[J]. Applied Catalysis B: Environmental, 2006, 66(1/2): 29-39.
|
39 |
Bian Z C, Meng X, Tao M, et al. Uniform Ni particles on amino-functionalized SBA-16 with excellent activity and stability for syngas methanation[J]. Journal of Molecular Catalysis A: Chemical, 2016, 417: 184-191.
|
40 |
Ren J, Mebrahtu C, Palkovits R. Ni-based catalysts supported on Mg-Al hydrotalcites with different morphologies for CO2 methanation: exploring the effect of metal-support interaction[J]. Catalysis Science & Technology, 2020, 10(6): 1902-1913.
|
41 |
Parastaev A, Muravev V, Huertas Osta E, et al. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts[J]. Nature Catalysis, 2020, 3(6): 526-533.
|
42 |
何璐铭, 辛忠, 高文莉, 等. 静电纺丝法制备高活性多孔Ni/SiO2甲烷化催化剂[J]. 化工学报, 2020, 71(11): 5007-5015.
|
|
He L M, Xin Z, Gao W L, et al. Highly efficient porous Ni/SiO2 catalysts prepared by electrospinning method for CO methanation[J]. CIESC Journal, 2020, 71(11): 5007-5015.
|
43 |
Gao J J, Liu Q, Gu F N, et al. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Advances, 2015, 5(29): 22759-22776.
|
44 |
Bligaard T, Nørskov J K, Dahl S, et al. The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. Journal of Catalysis, 2004, 224(1): 206-217.
|
45 |
Liu Q, Gu F N, Lu X P, et al. Enhanced catalytic performances of Ni/Al2O3 catalyst via addition of V2O3 for CO methanation[J]. Applied Catalysis A: General, 2014, 488: 37-47.
|
46 |
Liu J, Li C M, Wang F, et al. Enhanced low-temperature activity of CO2 methanation over highly-dispersed Ni/TiO2 catalyst[J]. Catalysis Science & Technology, 2013, 3(10): 2627.
|
47 |
Eckle S, Anfang H G, Behm R J. Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases[J]. The Journal of Physical Chemistry C, 2011, 115(4): 1361-1367.
|
48 |
Cesteros Y, Salagre P, Medina F, et al. Effect of the alumina phase and its modification on Ni/Al2O3 catalysts for the hydrodechlorination of 1, 2, 4-trichlorobenzene[J]. Applied Catalysis B: Environmental, 1999, 22(2): 135-147.
|
49 |
Zhao B R, Liu P, Li S, et al. Bimetallic Ni-Co nanoparticles on SiO2 as robust catalyst for CO methanation: effect of homogeneity of Ni-Co alloy[J]. Applied Catalysis B: Environmental, 2020, 278: 119307.
|
50 |
Han X X, Yang J Z, Guo H L, et al. Mechanism studies concerning carbon deposition effect of CO methanation on Ni-based catalyst through DFT and TPSR methods[J]. International Journal of Hydrogen Energy, 2016, 41(20): 8401-8411.
|
51 |
Andersson M P, Abild-Pedersen F, Remediakis I N, et al. Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces[J]. Journal of Catalysis, 2008, 255(1): 6-19.
|
52 |
Tanksale A, Beltramini J N, Dumesic J A, et al. Effect of Pt and Pd promoter on Ni supported catalysts—a TPR/TPO/TPD and microcalorimetry study[J]. Journal of Catalysis, 2008, 258(2): 366-377.
|