CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4648-4658.DOI: 10.11949/0438-1157.20220770
• Energy and environmental engineering • Previous Articles Next Articles
Chong HE1(), Jin BAI2, Jing GUO3, Lingxue KONG2, Hao LU2, Huaizhu LI2, Yuhong QIN1, Wen LI2
Received:
2022-06-01
Revised:
2022-07-22
Online:
2022-11-02
Published:
2022-10-05
Contact:
Chong HE
贺冲1(), 白进2, 郭晶3, 孔令学2, 鲁浩2, 李怀柱2, 秦育红1, 李文2
通讯作者:
贺冲
作者简介:
贺冲(1989—),男,博士,讲师,hechong@tyut.edu.cn
基金资助:
CLC Number:
Chong HE, Jin BAI, Jing GUO, Lingxue KONG, Hao LU, Huaizhu LI, Yuhong QIN, Wen LI. Effects of atmosphere and chemical composition on fusion characteristics of high-iron coal ash[J]. CIESC Journal, 2022, 73(10): 4648-4658.
贺冲, 白进, 郭晶, 孔令学, 鲁浩, 李怀柱, 秦育红, 李文. 气氛和化学组成对高铁煤灰熔融特性的影响机理[J]. 化工学报, 2022, 73(10): 4648-4658.
Add to citation manager EndNote|Ris|BibTeX
组成 | 含量/% |
---|---|
SiO2 | 35.17 |
Al2O3 | 19.16 |
Fe2O3 | 16.31 |
CaO | 18.04 |
MgO | 1.83 |
Na2O | 0.51 |
K2O | 0.31 |
SO3 | 8.05 |
TiO2 | 0.61 |
Table 1 Chemical composition of YZ coal ash
组成 | 含量/% |
---|---|
SiO2 | 35.17 |
Al2O3 | 19.16 |
Fe2O3 | 16.31 |
CaO | 18.04 |
MgO | 1.83 |
Na2O | 0.51 |
K2O | 0.31 |
SO3 | 8.05 |
TiO2 | 0.61 |
样品 | 含量/% | |||
---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | |
YZ | 39.61 | 21.64 | 18.39 | 20.36 |
不同铁含量的煤灰 | ||||
F5 | 46.11 | 25.19 | 5.00 | 23.70 |
F10 | 43.68 | 23.86 | 10.00 | 22.45 |
F15 | 41.26 | 22.54 | 15.00 | 21.21 |
F20 | 38.83 | 21.21 | 20.00 | 19.96 |
F25 | 36.40 | 19.89 | 25.00 | 18.71 |
不同钙含量的高铁煤灰 | ||||
Ca5 | 49.54 | 27.07 | 18.39 | 5.00 |
Ca15 | 43.08 | 23.53 | 18.39 | 15.00 |
Ca25 | 36.61 | 20.00 | 18.39 | 25.00 |
Ca35 | 30.14 | 16.47 | 18.39 | 35.00 |
不同硅铝比的高铁煤灰 | ||||
SA1 | 30.63 | 30.63 | 18.39 | 20.36 |
SA2 | 40.83 | 20.42 | 18.39 | 20.36 |
SA3 | 45.94 | 15.31 | 18.39 | 20.36 |
SA4 | 49.00 | 12.25 | 18.39 | 20.36 |
Table 2 Chemical composition of high-iron synthetic ash
样品 | 含量/% | |||
---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | |
YZ | 39.61 | 21.64 | 18.39 | 20.36 |
不同铁含量的煤灰 | ||||
F5 | 46.11 | 25.19 | 5.00 | 23.70 |
F10 | 43.68 | 23.86 | 10.00 | 22.45 |
F15 | 41.26 | 22.54 | 15.00 | 21.21 |
F20 | 38.83 | 21.21 | 20.00 | 19.96 |
F25 | 36.40 | 19.89 | 25.00 | 18.71 |
不同钙含量的高铁煤灰 | ||||
Ca5 | 49.54 | 27.07 | 18.39 | 5.00 |
Ca15 | 43.08 | 23.53 | 18.39 | 15.00 |
Ca25 | 36.61 | 20.00 | 18.39 | 25.00 |
Ca35 | 30.14 | 16.47 | 18.39 | 35.00 |
不同硅铝比的高铁煤灰 | ||||
SA1 | 30.63 | 30.63 | 18.39 | 20.36 |
SA2 | 40.83 | 20.42 | 18.39 | 20.36 |
SA3 | 45.94 | 15.31 | 18.39 | 20.36 |
SA4 | 49.00 | 12.25 | 18.39 | 20.36 |
Fig.3 XRD patterns of ash at 1200℃1—corundum (Al2O3);2—anorthite (CaAl2Si2O8);3—hematite (Fe2O3); 4—cristobalite (SiO2); 5—quartz (SiO2); 6—wollastonite (CaSiO3); 7—pseudowollastonite (Ca3Si3O9); 8—gehlenite (Ca2Al2SiO7); 9—calcium silicate (Ca2SiO4); 10—fayalite (Fe2SiO4); 11—larnite (Ca2SiO4);12—iron silicate (Fe2SiO4)
1 | Xie K C. Reviews of clean coal conversion technology in China: situations & challenges[J]. Chinese Journal of Chemical Engineering, 2021, 35: 62-69. |
2 | 王辅臣. 煤气化技术在中国:回顾与展望[J]. 洁净煤技术, 2021, 27(1): 1-33. |
Wang F C. Coal gasification technologies in China: review and prospect[J]. Clean Coal Technology, 2021, 27(1): 1-33. | |
3 | Song W J, Tang L H, Zhu Z B, et al. Rheological evolution and crystallization response of molten coal ash slag at high temperatures[J]. AIChE Journal, 2013, 59(8): 2726-2742. |
4 | 李文, 白进. 煤的灰化学[M]. 北京: 科学出版社, 2013: 74. |
Li W, Bai J. Chemistry of Ash from Coal[M]. Beijing: Science Press, 2013: 74. | |
5 | 刘洁妤, 龚岩, 吴晓翔, 等. 多喷嘴对置式气化炉内颗粒挥发分火焰可视化研究[J]. 化工学报, 2021, 72(3): 1275-1282. |
Liu J Y, Gong Y, Wu X X, et al. Visualization study on particle volatile flame opposed multi-burner impinging entrained-flow gasifier[J]. CIESC Journal, 2021, 72(3): 1275-1282. | |
6 | 苗苗, 孔皓, 张缦, 等. 多元煤灰灰熔点及晶体组成特性研究[J]. 化工学报, 2019, 70(8): 2909-2918. |
Miao M, Kong H, Zhang M, et al. Ash fusion temperature and crystal composition of multi-component coal ash[J]. CIESC Journal, 2019, 70(8): 2909-2918. | |
7 | 杨砚. 气化炉堵渣问题浅析[J]. 大氮肥, 2020, 43(3): 160-163. |
Yang Y. A study on slag block in gasifier[J]. Large Scale Nitrogenous Fertilizer Industry, 2020, 43(3): 160-163. | |
8 | He C, Bai J, Ilyushechkin A, et al. Effect of chemical composition on the fusion behaviour of synthetic high-iron coal ash[J]. Fuel, 2019, 253: 1465-1472. |
9 | 胡晓飞, 郭庆华, 刘霞, 等. 高钙高铁煤灰熔融及黏温特性研究[J]. 燃料化学学报, 2016, 44(7): 769-776. |
Hu X F, Guo Q H, Liu X, et al. Ash fusion and viscosity behavior of coal ash with high content of Fe and Ca[J]. Journal of Fuel Chemistry and Technology, 2016, 44(7): 769-776. | |
10 | He C, Bai J, Kong L, et al. Effect of iron valence distribution on ash fusion behavior under Ar atmosphere by a metallic iron addition in the synthetic coal ash[J]. Fuel, 2022, 310: 122340. |
11 | He C, Bai J, Kong L X, et al. The precipitation of metallic iron from coal ash slag in the entrained flow coal gasifier: by thermodynamic calculation[J]. Fuel Processing Technology, 2017, 162: 98-104. |
12 | Wei Y J, Li H X, Yamada N, et al. A microscopic study of the precipitation of metallic iron in slag from iron-rich coal during high temperature gasification[J]. Fuel, 2013, 103: 101-110. |
13 | Vassilev S V, Kitano K, Takeda S, et al. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology, 1995, 45(1): 27-51. |
14 | 陈晓东, 孔令学, 白进, 等. 高温气化条件下Na2O对煤灰中矿物质演化行为的影响[J]. 燃料化学学报, 2016, 44(3): 263-272. |
Chen X D, Kong L X, Bai J, et al. Effect of Na2O on mineral transformation of coal ash under high temperature gasification condition[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 263-272. | |
15 | Liu B, He Q H, Jiang Z H, et al. Relationship between coal ash composition and ash fusion temperatures[J]. Fuel, 2013, 105: 293-300. |
16 | 陈胜, 于敦喜, 吴建群, 等. 新疆高钙煤混烧对灰中含钙矿物熔融特性影响[J]. 化工学报, 2020, 71(9): 4260-4269. |
Chen S, Yu D X, Wu J Q, et al. Effects of Xinjiang high calcium coal co-firing on melting characteristics of Ca-bearing minerals in ash [J]. CIESC Journal, 2020, 71(9): 4260-4269. | |
17 | Bell D A, Towler B F, Fan M. Coal Gasification and Its Applications[M]. Oxford: William Andrew, 2011: 83. |
18 | Song W J, Tang L H, Zhu X D, et al. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy & Fuels, 2009, 23(4): 1990-1997. |
19 | Yu D X, Zhao L, Zhang Z Y, et al. Iron transformation and ash fusibility during coal combustion in air and O2/CO2 medium[J]. Energy & Fuels, 2012, 26(6): 3150-3155. |
20 | 吕俊复, 史航, 吴玉新, 等. 烟气气氛对准东煤灰熔融特性影响的显微观察[J]. 煤炭学报, 2021, 46(1): 263-273. |
Lyu J F, Shi H, Wu Y X, et al. Influence of flue gas atmosphere on Zhundong coal ash melting characteristics through microscopic observation[J]. Journal of China Coal Society, 2021, 46(1): 263-273. | |
21 | 殷志源, 项群扬, 竺浩炜. 不同气氛下煤灰中铁含量对灰熔融特性影响研究[J]. 煤质技术, 2019, 34(3): 36-38, 42. |
Yin Z Y, Xiang Q Y, Zhu H W. Influence research of iron content on coal ash fusion behavior under different atmospheres[J]. Coal Quality Technology, 2019, 34(3): 36-38, 42. | |
22 | 魏博, 谭厚章, 王学斌, 等. 煤燃烧过程中复杂气氛下的灰熔融特性[J]. 燃烧科学与技术, 2017, 23(4): 320-324. |
Wei B, Tan H Z, Wang X B, et al. Ash fusion characteristics under complex atmosphere in coal combustion process[J]. Journal of Combustion Science and Technology, 2017, 23(4): 320-324. | |
23 | Huffman G P, Huggins F E, Dunmyre G R. Investigation of the high-temperature behaviour of coal ash in reducing and oxidizing atmospheres[J]. Fuel, 1981, 60(7): 585-597. |
24 | 张鹏启, 杨琪琪, 屠卡滨, 等. 晋城粉煤煤灰不均匀熔融规律研究[J]. 燃料化学学报, 2018, 46(1): 8-14. |
Zhang P Q, Yang Q Q, Tu K B, et al. Research on the uneven ash melting behavior of pulverized Jincheng coal[J]. Journal of Fuel Chemistry and Technology, 2018, 46(1): 8-14. | |
25 | 代鑫, 白进, 李东涛, 等. Al2O3-SiO2-CaO-FeO四元体系煤灰结构及流动性关系的实验和理论研究[J]. 燃料化学学报, 2019, 47(6): 641-648. |
Dai X, Bai J, Li D T, et al. Experimental and theoretical investigation on relationship between structures of coal ash and its fusibility for Al2O3-SiO2-CaO-FeO system[J]. Journal of Fuel Chemistry and Technology, 2019, 47(6): 641-648. | |
26 | Yuan Z S, Wang J, Kong L X, et al. Comparison study of fusibility between coal ash and synthetic ash[J]. Fuel Processing Technology, 2021, 211: 106593. |
27 | Ilyushechkin A Y, Hla S S. Viscosity of high-iron slags from Australian coals[J]. Energy & Fuels, 2013, 27(7): 3736-3742. |
28 | 赵超越, 李风海, 马名杰. 硅酸盐熔体结构对煤灰黏温特性调控研究进展[J]. 应用化工, 2021, 50(7): 1938-1941. |
Zhao C Y, Li F H, Ma M J. Review on the regulation of viscosity-temperature characteristics from silicate melt structure variation[J]. Applied Chemical Industry, 2021, 50(7): 1938-1946. | |
29 | Song W J, Tang L H, Zhu X D, et al. Effect of coal ash composition on ash fusion temperatures[J]. Energy & Fuels, 2010, 24(1): 182-189. |
30 | Wang J J, Guo Q H, Wei J T, et al. Understanding the influence of iron on fluidity and crystallization characteristics of synthetic coal slags[J]. Fuel Processing Technology, 2020, 209: 106532. |
31 | Kondratiev A, Jak E. Predicting coal ash slag flow characteristics (viscosity model for the Al2O3-CaO-‘FeO’-SiO2 system)[J]. Fuel, 2001, 80(14): 1989-2000. |
32 | Zhou H, Xing Y J, Zhou M X. Effects of modified kaolin adsorbents on sodium adsorption efficiency and ash fusion characteristics during Zhundong coal combustion[J]. Journal of the Energy Institute, 2021, 97: 203-212. |
33 | Yan T G, Kong L X, Bai J, et al. Thermomechanical analysis of coal ash fusion behavior[J]. Chemical Engineering Science, 2016, 147: 74-82. |
34 | Zhang W W, Huang S, Wu S Y, et al. Ash fusion characteristics and gasification activity during biomasses co-gasification process[J]. Renewable Energy, 2020, 147: 1584-1594. |
35 | Wang Z G, Kong L X, Bai J, et al. Effect of vanadium and nickel on iron-rich ash fusion characteristics[J]. Fuel, 2019, 246: 491-499. |
36 | Wei B, Wang X B, Tan H Z, et al. Effect of silicon-aluminum additives on ash fusion and ash mineral conversion of Xinjiang high-sodium coal[J]. Fuel, 2016, 181: 1224-1229. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[4] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[5] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[6] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[7] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[8] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[9] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[10] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[11] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[12] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[13] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[14] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[15] | Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||