CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 4814-4825.DOI: 10.11949/0438-1157.20220728
• Reviews and monographs • Previous Articles Next Articles
Liubin SONG(), Yixuan WANG, Yinjie KUANG, Yubo XIA, Zhongliang XIAO()
Received:
2022-05-20
Revised:
2022-08-27
Online:
2022-12-06
Published:
2022-11-05
Contact:
Zhongliang XIAO
通讯作者:
肖忠良
作者简介:
宋刘斌(1981—),男,博士,副教授,liubinsong1981@126.com
基金资助:
CLC Number:
Liubin SONG, Yixuan WANG, Yinjie KUANG, Yubo XIA, Zhongliang XIAO. Development and prospect of pivotal materials and technologies in sodium-ion batteries[J]. CIESC Journal, 2022, 73(11): 4814-4825.
宋刘斌, 王怡萱, 匡尹杰, 夏宇博, 肖忠良. 钠离子电池中关键材料及技术的发展与前景[J]. 化工学报, 2022, 73(11): 4814-4825.
Add to citation manager EndNote|Ris|BibTeX
性质 | 钠 | 锂 |
---|---|---|
离子半径/nm | 0.102 | 0.076 |
原子量 | 22.99 | 6.94 |
密度/(g·cm-3) | 0.534 | 0.971 |
标准电极电势/V | -2.71 | -3.04 |
比容量/(mA·h·g-1) | 1166 | 3862 |
丰度/% | 2.83 | 0.006 |
Table 1 Comparison of properties for sodium and lithium
性质 | 钠 | 锂 |
---|---|---|
离子半径/nm | 0.102 | 0.076 |
原子量 | 22.99 | 6.94 |
密度/(g·cm-3) | 0.534 | 0.971 |
标准电极电势/V | -2.71 | -3.04 |
比容量/(mA·h·g-1) | 1166 | 3862 |
丰度/% | 2.83 | 0.006 |
1 | 胡兵, 徐立军, 何山, 等. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41: 1-15. |
Hu B, Xu L J, He S, et al. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon emission peaking and carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41: 1-15. | |
2 | 张凡, 王树众, 李艳辉, 等. 中国制造业碳排放问题分析与减排对策建议[J]. 化工进展, 2022, 41(3): 1645-1653. |
Zhang F, Wang S Z, Li Y H, et al. Analysis of CO2 emission and countermeasures and suggestions for emission reduction in Chinese manufacturing[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1645-1653. | |
3 | 果岩. 新能源发电设备组助力“碳达峰·碳中和”途径和实施措施主要观点和意见举措[J]. 电器工业, 2021(12): 69-72. |
Guo Y. Main views and measures of new energy power generation equipment group contributes to the approach and implementation measures of “carbon peak·carbon neutralization”[J]. China Electrical Equipment Industry, 2021(12): 69-72. | |
4 | 孟丹. 碳达峰背景下能源的低碳转型发展[J]. 能源与节能, 2021(12): 22-25. |
Meng D. Low-carbon transitional development of energy under background of peak carbon dioxide emissions[J]. Energy and Energy Conservation, 2021(12): 22-25. | |
5 | 杨裕生. 电化学储能研究22年回顾[J]. 电化学, 2020, 26(4): 443-463. |
Yang Y S. A review of electrochemical energy storage researches in the past 22 years[J]. Journal of Electrochemistry, 2020, 26(4): 443-463. | |
6 | 朱晟, 彭怡婷, 闵宇霖, 等. 电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(9): 4837-4852. |
Zhu S, Peng Y T, Min Y L, et al. Research progress on materials and technologies for electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4837-4852. | |
7 | Zhang X H, Li Z, Luo L G, et al. A review on thermal management of lithium-ion batteries for electric vehicles[J]. Energy, 2022, 238: 121652. |
8 | Ramesh A, Tripathi A, Balaya P. A mini review on cathode materials for sodium-ion batteries[J]. International Journal of Applied Ceramic Technology, 2022, 19(2): 913-923. |
9 | Wei F L, Zhang Q P, Zhang P, et al. Review—research progress on layered transition metal oxide cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2021, 168(5): 050524. |
10 | Berckmans G, Messagie M, Smekens J, et al. Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030[J]. Energies, 2017, 10(9): 1314. |
11 | Li Y, Zhang J W, Chen Q G, et al. Emerging of heterostructure materials in energy storage: a review[J]. Advanced Materials, 2021, 33(27): 2100855. |
12 | Zhao C L, Lu Y X, Chen L Q, et al. Ni-based cathode materials for Na-ion batteries[J]. Nano Research, 2019, 12(9): 2018-2030. |
13 | Gao Y, Zhang H, Liu X H, et al. Low-cost polyanion-type sulfate cathode for sodium-ion battery[J]. Advanced Energy Materials, 2021, 11(42): 2101751. |
14 | Ha H, Nam S, Jeong S H, et al. Development of covalent-bonded organic/carbon anode for sodium-ion battery[J]. Journal of Mechanical Science and Technology, 2019, 33(8): 3865-3870. |
15 | Chen M Z, Liu Q N, Wang S W, et al. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: problems, progress, and key technologies[J]. Advanced Energy Materials, 2019, 9(14): 1803609. |
16 | Hakim C, Sabi N, Saadoune I. Mixed structures as a new strategy to develop outstanding oxides-based cathode materials for sodium ion batteries: a review[J]. Journal of Energy Chemistry, 2021, 61: 47-60. |
17 | 朱晓辉, 庄宇航, 赵旸, 等. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349. |
Zhu X H, Zhuang Y H, Zhao Y, et al. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. | |
18 | Jin T, Ji X, Wang P F, et al. High-energy aqueous sodium-ion batteries[J]. Angewandte Chemie International Edition, 2021, 60(21): 11943-11948. |
19 | Shi C H, Wang L G, Chen X A, et al. Challenges of layer-structured cathodes for sodium-ion batteries[J]. Nanoscale Horizons, 2022, 7(4): 338-351. |
20 | Yusoff N F M, Idris N H, Noerochim L. Review on recent progress in manganese-based anode materials for sodium-ion batteries[J]. International Journal of Energy Research, 2022, 46(2): 667-683. |
21 | Quartarone E, Eisenmann T, Kuenzel M, et al. Towards advanced sodium-ion batteries: green, low-cost and high-capacity anode compartment encompassing phosphorus/carbon nanocomposite as the active material and aluminum as the current collector[J]. Journal of the Electrochemical Society, 2020, 167(8): 080509. |
22 | Fan T E, Xie H F. Sb2S3-rGO for high-performance sodium-ion battery anodes on Al and Cu foil current collector[J]. Journal of Alloys and Compounds, 2019, 775: 549-553. |
23 | Chen C C, Li T J, Tian H, et al. Building highly stable and industrial NaVPO4F/C as bipolar electrodes for high-rate symmetric rechargeable sodium-ion full batteries[J]. Journal of Materials Chemistry A, 2019, 7(31): 18451-18457. |
24 | Qi S H, Wu D X, Dong Y, et al. Cobalt-based electrode materials for sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 370: 185-207. |
25 | Kosova N V, Shindrov A A. Mixed polyoxyanion cathode materials[J]. Energy Storage Materials, 2021, 42: 570-593. |
26 | Jin T, Li H X, Zhu K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2020, 49(8): 2342-2377. |
27 | 曹鑫鑫, 周江, 潘安强, 等. 钠离子电池磷酸盐正极材料研究进展[J]. 物理化学学报, 2020, 36(5): 24-49. |
Cao X X, Zhou J, Pan A Q, et al. Recent advances in phosphate cathode materials for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): 24-49. | |
28 | Kaliyappan K, Or T, Deng Y P, et al. Constructing safe and durable high-voltage P2 layered cathodes for sodium ion batteries enabled by molecular layer deposition of alucone[J]. Advanced Functional Materials, 2020, 30(17): 1910251. |
29 | Zhou P F, Che Z N, Ma F T, et al. Designing water/air-stable P2-layered cathodes with delayed P2-O2 phase transition by composition and structure engineering for sodium-ion batteries at high voltage[J]. Chemical Engineering Journal, 2021, 420: 127667. |
30 | Luo R, Zhang N X, Wang J, et al. Insight into effects of divalent cation substitution stabilizing P2-type layered cathode materials for sodium-ion batteries[J]. Electrochimica Acta, 2021, 368: 137614. |
31 | Mukherjee S, Mujib S B, Soares D, et al. Electrode materials for high-performance sodium-ion batteries[J]. Materials (Basel, Switzerland), 2019, 12(12): 1952. |
32 | Xiao J, Li X, Tang K K, et al. Recent progress of emerging cathode materials for sodium ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(10): 3735-3764. |
33 | 马点秋. 钠与锂:动力电池的未来之争[J]. 看世界, 2021(17): 81-84. |
Ma D Q. Sodium and lithium: the future of power batteries[J]. World View, 2021(17): 81-84. | |
34 | Rudola A, Rennie A J R, Heap R, et al. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook[J]. Journal of Materials Chemistry A, 2021, 9(13): 8279-8302. |
35 | Hijazi H, Desai P, Mariyappan S. Non-aqueous electrolytes for sodium-ion batteries: challenges and prospects towards commercialization[J]. Batteries & Supercaps, 2021, 4(6): 881-896. |
36 | Liu Q N, Hu Z, Chen M Z, et al. The cathode choice for commercialization of sodium-ion batteries: layered transition metal oxides versus Prussian blue analogs[J]. Advanced Functional Materials, 2020, 30(14): 1909530. |
37 | 冯雪廷, 矫庆泽, 李群, 等. NiCo2S4/N, S-rGO纳米复合材料的制备和电化学储钠性能[J]. 化工学报, 2020, 71(9): 4314-4324. |
Feng X T, Jiao Q Z, Li Q, et al. Preparation and sodium storage performance of NiCo2S4/N, S-rGO nanocomposites[J]. CIESC Journal, 2020, 71(9): 4314-4324. | |
38 | 王博阳, 夏吉利, 董晓玲, 等. 不同变质程度煤衍生硬炭的储钠行为研究[J]. 化工学报, 2021, 72(11): 5738-5750. |
Wang B Y, Xia J L, Dong X L, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal, 2021, 72(11): 5738-5750. | |
39 | 王晓波, 赵青山, 程智年, 等. 高性能碳基储能材料的设计、合成与应用[J]. 化工学报, 2020, 71(6): 2660-2677. |
Wang X B, Zhao Q S, Cheng Z N, et al. Design, synthesis and application of high-performance carbon-based energy storage materials[J]. CIESC Journal, 2020, 71(6): 2660-2677. | |
40 | Kong L J, Liu M, Huang H, et al. Metal/covalent-organic framework based cathodes for metal-ion batteries[J]. Advanced Energy Materials, 2021, 12(4): 2111727. |
41 | Ren H X, Li Y, Ni Q, et al. Unraveling anionic redox for sodium layered oxide cathodes: breakthroughs and perspectives[J]. Advanced Materials, 2022, 34(8): 2106171. |
42 | Fang L B, Bahlawane N, Sun W P, et al. Conversion-alloying anode materials for sodium ion batteries[J]. Small, 2021, 17(37): 2101137. |
43 | Deng W T, Chen J, Yang L, et al. Solid solution metal chalcogenides for sodium-ion batteries: the recent advances as anodes[J]. Small, 2021, 17(35): 2101058. |
44 | Guo S T, Feng Y Z, Wang L B, et al. Architectural engineering achieves high-performance alloying anodes for lithium and sodium ion batteries[J]. Small, 2021, 17(19): 2005248. |
45 | Tian Z H, Zhang Y, Zhu J X, et al. A reanalysis of the diverse sodium species in carbon anodes for sodium ion batteries: a thermodynamic view[J]. Advanced Energy Materials, 2021, 11(47): 2102489. |
46 | Zhang L P, Wang W, Lu S F, et al. Carbon anode materials: a detailed comparison between Na-ion and K-ion batteries[J]. Advanced Energy Materials, 2021, 11(11): 2003640. |
47 | Wu X, Lan X X, Hu R Z, et al. Tin-based anode materials for stable sodium storage: progress and perspective[J]. Adv. Mater., 2022, 34(7): 2106895. |
48 | Luo P, Zheng C, He J W, et al. Structural engineering in graphite-based metal-ion batteries[J]. Advanced Functional Materials, 2022, 32(9): 2107277. |
49 | Liu X H, Peng J, Lai W H, et al. Advanced characterization techniques paving the way for commercialization of low-cost prussian blue analog cathodes[J]. Advanced Functional Materials, 2022, 32(7): 2108616. |
50 | Wang J, Wang Z Z, Ni J F, et al. Electrospinning for flexible sodium-ion batteries[J]. Energy Storage Materials, 2022, 45: 704-719. |
51 | Zhang L P, Li X L, Yang M R, et al. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective[J]. Energy Storage Materials, 2021, 41: 522-545. |
52 | Wang J J, Yue X Y, Xie Z K, et al. MOFs-derived transition metal sulfide composites for advanced sodium ion batteries[J]. Energy Storage Materials, 2021, 41: 404-426. |
53 | Lavela P, Klee R, Tirado J L. A dual vanadium substitution strategy for improving NASICON-type cathode materials for Na-ion batteries[J]. Sustainable Energy & Fuels, 2021, 5(16): 4095-4103. |
54 | Li N, Wang S F, Zhao E Y, et al. Tailoring interphase structure to enable high-rate, durable sodium-ion battery cathode[J]. Journal of Energy Chemistry, 2022, 68: 564-571. |
55 | Voronina N, Kim H J, Shin M, et al. Rational design of Co-free layered cathode material for sodium-ion batteries[J]. Journal of Power Sources, 2021, 514: 230581. |
56 | Qi R, Chu M H, Zhao W G, et al. A highly-stable layered Fe/Mn-based cathode with ultralow strain for advanced sodium-ion batteries[J]. Nano Energy, 2021, 88: 106206. |
57 | Brennhagen A, Cavallo C, Wragg D S, et al. Operando XRD studies on Bi2MoO6 as anode material for Na-ion batteries[J]. Nanotechnology, 2022, 33(18): 185402. |
58 | Ni D Y, Shen Y H, Sun W, et al. Design of 3D topological nodal-net porous carbon for sodium-ion battery anodes[J]. Journal of Materials Chemistry A, 2022, 10(14): 7754-7763. |
59 | Yuan J, Zhao J C, Lu T M, et al. ZnSe@C core-shell microspheres as potential anode material for sodium ion batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128549. |
60 | Zhou L F, Gao X W, Du T, et al. Two-dimensional NbSSe as anode material for low-temperature sodium-ion batteries[J]. Chemical Engineering Journal, 2022, 435: 134838. |
61 | Ud Din M A, Irfan S, Jamil S, et al. Graphene-like ultrathin bismuth selenide nanosheets as highly stable anode material for sodium-ion battery[J]. Journal of Alloys and Compounds, 2022, 901: 163572. |
62 | Hassanzadeh N, Sadrnezhaad S K. Magnetic stirring assisted hydrothermal synthesis of Na3MnCO3PO4 cathode material for sodium-ion battery[J]. Ceramics International, 2021, 47(19): 26929-26934. |
63 | Iarchuk A R, Sheptyakov D V, Abakumov A M. Hydrothermal microwave-assisted synthesis of Na3+ x V2– y Mn y (PO4)2F3 solid solutions as potential positive electrodes for Na-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(5): 5007-5014. |
64 | Wang H M, Pan Z B, Zhang H T, et al. A green and scalable synthesis of Na3Fe2(PO4)P2O7/rGO cathode for high-rate and long-life sodium-ion batteries[J]. Small Methods, 2021, 5(8): 2100372. |
65 | Peng J, Zhang W, Hu Z, et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries[J]. Nano Letters, 2022, 22(3): 1302-1310. |
66 | Li H X, Wang T S, Wang S, et al. Scalable synthesis of the Na2FePO4F cathode through an economical and reliable approach for sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(35): 11798-11806. |
67 | Kim D H, Kim J Y, Park J H, et al. RT-XAMF and TR-XRD studies of solid-state synthesis and thermal stability of NaNiO2 as cathode material for sodium-ion batteries[J]. Ceramics International, 2022, 48(14): 19675-19680. |
68 | Peng Q Q, Lu Y F, Qi S, et al. Pomegranate-inspired nitrogen-doped carbon-coated bimetallic sulfides as a high-performance anode of sodium-ion batteries and their structural evolution analysis[J]. ACS Applied Energy Materials, 2022, 5(3): 3199-3207. |
69 | Wang W L, Gang Y, Peng J, et al. Effect of eliminating water in Prussian blue cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2022, 32(25): 2111727. |
70 | Sun Z H, Gu Z Y, Shi W J, et al. Mesoporous N-doped carbon-coated CoSe nanocrystals encapsulated in S-doped carbon nanosheets as advanced anode with ultrathin solid electrolyte interphase for high-performance sodium-ion half/full batteries[J]. Journal of Materials Chemistry A, 2022, 10(4): 2113-2121. |
71 | Chu S Y, Guo S H, Zhou H S. Advanced cobalt-free cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2021, 50(23): 13189-13235. |
72 | Li X L, Bao J, Li Y F, et al. Boosting reversibility of Mn-based tunnel-structured cathode materials for sodium-ion batteries by magnesium substitution[J]. Advanced Science, 2021, 8(9): 2004448. |
73 | Pei Q, Lu M L, Liu X L, et al. The effects of Al-doped to cathode material based on hollow microspheres of nickel-manganese on sodium-ion batteries[J]. Nanotechnology, 2021, 32(39): 395602. |
74 | Xie B X, Sun B Y, Gao T Y, et al. Recent progress of Prussian blue analogues as cathode materials for nonaqueous sodium-ion batteries[J]. Coordination Chemistry Reviews, 2022, 460: 214478. |
75 | Zhang D P, Sun L H, Wang C H, et al. An open-framework structured material: [Ni(en)2]3[Fe(CN)6]2 as a cathode material for aqueous sodium-and potassium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(14): 16197-16203. |
76 | Wu S F, Wang L F, Jiang Y, et al. In situ secondary phase modified low-strain Na3Ti(PO3)3N cathode achieving fast kinetics and ultralong cycle life[J]. ACS Energy Lett., 2022, 7(2): 632-639. |
77 | Chen X, Wu Q, Guo P, et al. Rational design of two dimensional single crystalline Na3V2(PO4)2F3 nanosheets for boosting Na+ migration and mitigating grain pulverization[J]. Chemical Engineering Journal, 2022, 439: 135533. |
78 | Zhong W T, Huang Q H, Zheng F H, et al. Structural insight into the abnormal capacity of a co-substituted tunnel-type Na0.44MnO2 cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(42): 47548-47555. |
79 | Cheng C, Ding M L, Yan T R, et al. Anionic redox activities boosted by aluminum doping in layered sodium-ion battery electrode[J]. Small Methods, 2022, 6(3): 2101524. |
80 | Zhou D M, Zeng C, Xiang J, et al. Review on Mn-based and Fe-based layered cathode materials for sodium-ion batteries[J]. Ionics, 2022, 28(5): 2029-2040. |
81 | Xiao J, Gao H, Tang K K, et al. Manipulating stable layered P2-type cathode via a co-substitution strategy for high performance sodium ion batteries[J]. Small Methods, 2022, 6(3): 2101292. |
82 | Chen Z W, Yang M L, Chen G J, et al. Triggering anionic redox activity in Fe/Mn-based layered oxide for high-performance sodium-ion batteries[J]. Nano Energy, 2022, 94: 106958. |
83 | Song L B, Jiang P, Xiao Z L, et al. Core-shell structure LiNi0.8Co0.1Mn0.1O2 cathode material with improved electrochemical performance at high voltage[J]. Ionics, 2021, 27: 949-959. |
84 | Xiao Z L, Chi Z Z, Song L B, et al. LiTa2PO8 coated nickel-rich cathode material for improved electrochemical performance at high voltage[J]. Ceramics International, 2020, 46: 8328-8333. |
85 | 宋刘斌, 蒋鹏, 肖忠良, 等. 核壳结构正极材料界面设计与性能研究[J]. 化工学报, 2019, 70(7): 2426-2438. |
Song L B, Jiang P, Xiao Z L, et al. Interface design and properties of core-shell structure cathode materials[J]. CIESC Journal, 2019, 70(7): 2426-2438. | |
86 | Plewa A, Kulka A, Hanc E, et al. Facile aqueous synthesis of high performance Na2FeM(SO4)3 (M = Fe, Mn, Ni) alluaudites for low cost Na-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(5): 2728-2740. |
87 | Pan W L, Guan W H, Liu S Y, et al. Na2Fe(SO4)2: an anhydrous 3.6 V, low-cost and good-safety cathode for a rechargeable sodium-ion battery[J]. Journal of Materials Chemistry A, 2019, 7(21): 13197-13204. |
88 | Kovrugin V M, Nekrasova D O, Siidra O I, et al. Mineral-inspired crystal growth and physical properties of Na2Cu(SO4)2 and review of Na2M(SO4)2(H2O) x (x = 0—6) compounds[J]. Crystal Growth & Design, 2019, 19(2): 1233-1244. |
89 | Baster D, Kondracki Ł, Oveisi E, et al. Prussian blue analogue—sodium-vanadium hexacyanoferrate as a cathode material for Na-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(9): 9758-9765. |
90 | Feng F, Chen S L, Zhao S Q, et al. Enhanced electrochemical performance of MnFe@NiFe Prussian blue analogue benefited from the inhibition of Mn ions dissolution for sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 411: 128518. |
91 | Qin M S, Ren W H, Jiang R X, et al. Highly crystallized Prussian blue with enhanced kinetics for highly efficient sodium storage[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 3999-4007. |
92 | Peng J, Zhang W, Liu Q N, et al. Prussian blue analogues for sodium-ion batteries: past, present, and future[J]. Advanced Materials, 2022, 34(15): 2108384. |
93 | Zhou G Y, Mo L L, Zhou C Y, et al. Flexible naphthalene-based polyimide nanofiber cathode with hierarchical micro/nanoporous structure for high-performance organic sodium-ion batteries[J]. Composites Communications, 2020, 22: 100490. |
94 | Zhang J W, Jia K K, Li X X, et al. A furan-based organic cathode material for high-performance sodium ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(18): 10062-10068. |
95 | Wang Y Q, Bai P X, Li B F, et al. Ultralong cycle life organic cathode enabled by ether-based electrolytes for sodium-ion batteries[J]. Advanced Energy Materials, 2021, 11(38): 2101972. |
96 | Zhang H, Gao Y, Liu X H, et al. Organic cathode materials for sodium-ion batteries: from fundamental research to potential commercial application[J]. Advanced Functional Materials, 2022, 32(4): 2107718. |
97 | Liang J M, Zhang L J, XiLi D G, et al. Research progress on tin-based anode materials for sodium ion batteries[J]. Rare Metals, 2020, 39(9): 1005-1018. |
98 | Islam M, Ali B, Jeong M G, et al. Carbon microsphere encapsulated SnS for use as an anode material in full-cell sodium-ion battery[J]. International Journal of Energy Research, 2022, 46(4): 4726-4738. |
99 | Chen G, Li X M, Zeng T B, et al. Carbon-coated Sn2S3 hollow spheres as high performance anode materials for sodium-ion batteries[J]. Carbon, 2021, 171: 464-473. |
100 | Li P X, Guo X, Zang R, et al. Nanoconfined SnO2/SnSe2 heterostructures in N-doped carbon nanotubes for high-performance sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 418: 129501. |
101 | Tomboc G M, Wang Y T, Wang H, et al. Sn-based metal oxides and sulfides anode materials for Na ion battery[J]. Energy Storage Materials, 2021, 39: 21-44. |
102 | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
Liu Q N, Hu W P, Hu Z. Research progress of phosphorus-based anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. | |
103 | Huang F, Wang L, Qin D C, et al. Constructing heterostructured bimetallic selenides on an N-doped carbon nanoframework as anodes for ultrastable Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 1222-1232. |
104 | Nguyen Q H, Kidanu W G, Ngo H D, et al. Fabricating iron-tin-oxide nanocomposite electrodes for sodium-ion batteries[J]. Ceramics International, 2022, 48(13): 19109-19115. |
105 | He W, Chen K, Pathak R, et al. Achieving high pseudocapacitance anode by an in situ nanocrystallization strategy for ultrastable sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22577-22585. |
106 | Yuan Y F, Zhao W C, Zhang D, et al. Carbon nanosheet@MoO2/Mo2C nanocrystalline-assembled hierarchical mesoporous nanospheres as high-performance anode for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 895: 162681. |
107 | Sun W, Sun Q, Lu R F, et al. Sodium hypophosphite-assist pyrolysis of coal pitch to synthesis P-doped carbon nanosheet anode for ultrafast and long-term cycling sodium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 889: 161678. |
108 | Zhao S Q, Guo Z Q, Yang J, et al. Nanoengineering of advanced carbon materials for sodium-ion batteries[J]. Small, 2021, 17(48): 2007431. |
109 | Lin D M, Li K K, Zhou L M. Advanced in situ characterizations of nanocomposite electrodes for sodium-ion batteries—a short review[J]. Composites Communications, 2021, 25: 100635. |
110 | Park S K, Dose W M, Boruah B D, et al. In situ and operando analyses of reaction mechanisms in vanadium oxides for Li-, Na-, Zn-, and Mg-ions batteries[J]. Advanced Materials Technologies, 2022, 7(1): 2100799. |
111 | Guo C, Yang J W, Cui Z Y, et al. In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries[J]. Journal of Energy Chemistry, 2022, 65: 514-523. |
112 | Zhang J Y, Zhang Q, Qu X L, et al. Hierarchically pyridinic-nitrogen enriched porous carbon for advanced sodium-ion and lithium-sulfur batteries: electrochemical performance and in situ Raman spectroscopy investigations[J]. Applied Surface Science, 2022, 574: 151559. |
113 | Zuo W H, Qiu J M, Liu X S, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres[J]. Nature Communications, 2020, 11: 3544. |
114 | Hou D W, Xia D W, Gabriel E, et al. Spatial and temporal analysis of sodium-ion batteries[J]. ACS Energy Letters, 2021, 6(11): 4023-4054. |
[1] | Chengyi AI, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Kening SUN. Investigation on PrBaFe2O6-δ anode material with in-situ FeNi nanoparticle in direct carbon solid oxide fuel cell [J]. CIESC Journal, 2022, 73(8): 3708-3719. |
[2] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
[3] | Pengpeng WANG, Yanggang JIA, Xia SHAO, Jie CHENG, Aiqin MAO, Jie TAN, Daolai FANG. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials [J]. CIESC Journal, 2022, 73(12): 5625-5637. |
[4] | Tao HU, Xiong ZHANG, Yabin AN, Chen LI, Yanwei MA. Research progress of carbon cathode materials for Li-ion capacitors [J]. CIESC Journal, 2020, 71(6): 2530-2546. |
[5] | He WANG, Nan QIN, Xin GUO, Junsheng ZHENG, Jigang ZHAO. Surface modification and electrochemical properties of hard carbon anode material for lithium ion capacitors [J]. CIESC Journal, 2020, 71(6): 2735-2742. |
[6] | Zhibo ZHANG, Kunyao PENG, Maoning GENG, Xinyue ZHAO, Si LIU, Changbao ZHU. Recent progress on cathode materials for potassium-ion batteries [J]. CIESC Journal, 2020, 71(10): 4429-4444. |
[7] | Liubin SONG, Anxian LI, Zhongliang XIAO, Zhenzhen CHI, Zhong CAO. Application research status of first-principles in lithium-ion battery electrode materials [J]. CIESC Journal, 2019, 70(6): 2051-2059. |
[8] | LI Yanwei, LI Shiyu, XIE Zhiping, YAO Jinhuan, JIANG Jiqiong, ZHANG Lingzhi. Surface morphology and sodium storage performance of V2O5 thin film electrode prepared by CTAB assisted electrodeposition [J]. CIESC Journal, 2016, 67(11): 4771-4778. |
[9] | Zhang Rui, WU Yuanxin, HE Yunwei, AI Changchun. Synthesis of Li3PO4-doped Li(Ni0.5Co0.2Mn0.3)O2 by rheological phase method and its electrochemical performance as cathode material for Li-ion batteries [J]. CIESC Journal, 2015, 66(8): 3177-3182. |
[10] | ZHAO Chenchen,HE Xiangming,WANG Li,GUO Jianwei. Progress of cathode materials for electrochemical reduction of carbon dioxide [J]. Chemical Industry and Engineering Progree, 2013, 32(02): 373-380. |
[11] | YUAN Huatang,WANG Yijing,YAN Chao,SONG Dawei . Progress in rare earth-based high performance hydrogen storage alloys [J]. Chemical Industry and Engineering Progree, 2012, 31(02 ): 253-258. |
[12] | SHI Xin1,2,PU Weihua2,WU Yuling2,FAN Lizhen1. Research progress on layered lithium manganese oxide as cathode material for lithium-ion battery [J]. , 2011, 30(6): 1264-. |
[13] | ZHENG Yupei,NULI Yanna,YANG Jun,CHEN Qiang,WANG Jiulin. Research progress of cathode materials for rechargeable magnesium batteries [J]. , 2011, 30(5): 1024-. |
[14] | WANG Qi,DENG Sixu,LIU Jingbing,WANG Hao. Research progress in rate performance of LiFePO4 cathode materials [J]. , 2011, 30(12): 2652-. |
[15] | HUANG Wenqing1,2,ZHANG Ying2,YANG Wantai1. Advances in research and characterization of Ziegler-Natta catalysts [J]. , 2010, 29(7): 1224-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||