[1] |
DORIAN J P, FRANSSEN H T, SIMBECK D R. Global challenges in energy[J]. Energy Policy, 2006, 34(15):1984-1991.
|
[2] |
CROMPTON P, WU Y. Energy consumption in China:past trends and future directions[J]. Energy Economics, 2005, 27(1):195-208.
|
[3] |
DRESSELHAUS M S, THOMAS I L. Alternative energy technologies[J]. Nature, 2001, 414(6861):332-337.
|
[4] |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
|
[5] |
SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8):947-958.
|
[6] |
ELLIS B L, NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Current Opinion in Solid State and Materials Science, 2012, 16(4):168-177.
|
[7] |
HUANG X, RUI X, HNG H H, et al. Vanadium pentoxide-based cathode materials for lithium-ion batteries:morphology control, carbon hybridization, and cation doping[J]. Particle & Particle Systems Characterization, 2014, 32(3):276-294.
|
[8] |
STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(4):1271-1273.
|
[9] |
TEPAVCEVIC S, XIONG H, STAMENKOVIC V R, et al. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries[J]. ACS Nano, 2011, 6(1):530-538.
|
[10] |
ARICÒ A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5):366-77.
|
[11] |
YAN D J, ZHU X D, WANG K X, et al. Facile and elegant self-organization of Ag nanoparticles and TiO2 nanorods on V2O5 nanosheets as a superior cathode material of lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(13):4900-4907.
|
[12] |
GAO X T, ZHU X D, LE S H, et al. Boosting high-rate lithium storage of V2O5 nanowires by self-assembly on N-doped graphene nanosheets[J]. ChemElectrochem, DOI:10.1002/celc.201600305R1.
|
[13] |
HUANG X, RUI X, HNG H H, et al. Vanadium pentoxide-based cathode materials for lithium-ion batteries:morphology control, carbon hybridization, and cation doping[J]. Particle & Particle Systems Characterization, 2015, 32(3):276-294.
|
[14] |
李延伟, 李世玉, 潘观林, 等. 电沉积法制备V2O5薄膜及其储钠性能研究[J]. 电镀与精饰, 2015, 37(8):1-6. LI Y W, LI S, PAN G L, et al. The sodium storage performance of V2O5 films prepared by electrodeposition[J]. Plating and Finishing, 2015, 37(8):1-6.
|
[15] |
WEI Q, LIU J, FENG W, et al. Hydrated vanadium pentoxide with superior sodium storage capacity[J]. Journal of Materials Chemistry A, 2015, 3(15):8070-8075.
|
[16] |
SARAVANAKUMAR B, PURUSHOTHAMAN K K, MURALIDHARAN G. High performance supercapacitor based on carbon coated V2O5 nanorods[J]. Journal of Electroanalytical Chemistry, 2015, 758:111-116.
|
[17] |
MORETTI A, MARONI F, OSADA I, et al. V2O5 aerogel as a versatile cathode material for lithium and sodium batteries[J]. Chemelectrochem, 2015, 2(4):529-537.
|
[18] |
CHANNU V S R, HOLZE R, RAMBABU B, et al. Reduction of V4+ from V5+ using polymer as a surfactant for electrochemical applications[J]. International Journal of Electrochemical Science, 2010, 5:605-614.
|
[19] |
LI Y, YAO J, UCHAKER E, et al. Sn-doped V2O5 film with enhanced lithium-ion storage performance[J]. Journal of Physical Chemistry C, 2013, 117(45):23507-23514.
|
[20] |
LIU Z, FANG G, WANG Y, et al. Laser-induced colouration of V2O5[J]. Journal of Physics D:Applied Physics, 2000, 33(18):2327-2332.
|
[21] |
LIU D, LIU Y, PAN A, et al. Enhanced lithium-ion intercalation properties of V2O5 xerogel electrodes with surface defects[J]. Journal of Physical Chemistry C, 2011, 115(11):4959-4965.
|
[22] |
LI Y, YAO J, ZHU Y, et al. Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide[J]. Journal of Power Sources, 2012, 203:177-183.
|
[23] |
LI Y W, YAO J H, LIU C J, et al. Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes[J]. International Journal of Hydrogen Energy, 2010, 35(6):2539-2545.
|
[24] |
RUI X H, DING N, LIU J, et al. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material[J]. Electrochimica Acta, 2010, 55(7):2384-2390.
|
[25] |
庄伟, 吕玲红, 邬新兵, 等. K2Ti4O9制备TiO2-B纤维快速嵌锂负极材料[J]. 化工学报, 2013, 64(1):374-380. ZHUANG W, LÜ L H, WU X B, et al. TiO2-B fibres derived from K2Ti4O9 as fast lithium intercalation negative materials[J]. CIESC Journal, 2013, 64(1):374-380.
|
[26] |
WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2(anatase) nanoparticles[J]. Journal of Physical Chemistry C, 2007, 111(40):14925-14931.
|
[27] |
BREZESINSKI T, WANG J, POLLEUX J, et al. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors[J]. Journal of the American Chemical Society, 2009, 131(5):1802-1809.
|
[28] |
LIU T C, PELL W G, CONWAY B E, et al. Behavior of molybdenum nitrides as materials for electrochemical capacitors comparison with ruthenium oxide[J]. Journal of the Electrochemical Society, 1998, 145(6):1882-1888.
|
[29] |
SATHIYA M, PRAKASH A S, RAMESHA K, et al. V2O5-anchored carbon nanotubes for enhanced electrochemical energy storage[J]. Journal of the American Chemical Society, 2011, 133(40):16291-16299.
|