1 |
Zhang S M, Zhao C H, Gao F R. Incipient fault detection for multiphase batch processes with limited batches[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 103-117.
|
2 |
于蕾, 邓晓刚, 曹玉苹, 等. 基于变量分组DTW-MCVA的不等长间歇过程故障检测方法[J]. 化工学报, 2019, 70(9): 3441-3448.
|
|
Yu L, Deng X G, Cao Y P, et al. Fault detection method of unequal-length batch process based on VGDTW-MCVA[J]. CIESC Journal, 2019, 70(9): 3441-3448.
|
3 |
Rendall R, Chiang L H, Reis M S. Data-driven methods for batch data analysis—a critical overview and mapping on the complexity scale[J]. Computers & Chemical Engineering, 2019, 124: 1-13.
|
4 |
Tulsyan A, Garvin C, Undey C. Industrial batch process monitoring with limited data[J]. Journal of Process Control, 2019, 77: 114-133.
|
5 |
Qin S J, Zheng Y Y. Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures[J]. AIChE Journal, 2013, 59(2): 496-504.
|
6 |
Zhang Y W, Zhang Y. Process monitoring, fault diagnosis and quality prediction methods based on the multivariate statistical techniques[J]. IETE Technical Review, 2010, 27(5): 406-420.
|
7 |
Chen Z W, Liu C, Ding S X, et al. A just-in-time-learning-aided canonical correlation analysis method for multimode process monitoring and fault detection[J]. IEEE Transactions on Industrial Electronics, 2021, 68(6): 5259-5270.
|
8 |
彭开香, 张丽敏. 基于核典型相关性-熵成分分析的工业过程质量检测方法[J]. 控制与决策, 2021, 36(12): 2999-3006.
|
|
Peng K X, Zhang L M. A quality monitoring method for industrial process based on kernel canonical correlation-entropy component analysis[J]. Control and Decision, 2021, 36 (12): 2999-3006.
|
9 |
褚菲, 彭闯, 贾润达, 等. 基于多尺度核JYMKPLS迁移模型的间歇过程产品质量的在线预测方法[J]. 化工学报, 2021, 72(4): 2178-2189.
|
|
Chu F, Peng C, Jia R D, et al. Online prediction method of batch process product quality based on multi-scale kernel JYMKPLS transfer model[J]. CIESC Journal, 2021, 72(4): 2178-2189.
|
10 |
贾润达, 毛志忠, 王福利. 基于KPLS模型的间歇过程产品质量控制[J]. 化工学报, 2013, 64(4): 1332-1339.
|
|
Jia R D, Mao Z Z, Wang F L. KPLS model based product quality control for batch processes[J]. CIESC Journal, 2013, 64(4): 1332-1339.
|
11 |
Peng K X, Li Q Q, Zhang K, et al. Quality-related process monitoring for dynamic non-Gaussian batch process with multi-phase using a new data-driven method[J]. Neurocomputing, 2016, 214: 317-328.
|
12 |
胡益, 王丽, 马贺贺, 等. 基于核PLS方法的非线性过程在线监控[J]. 化工学报, 2011, 62(9): 2555-2561.
|
|
Hu Y, Wang L, Ma H H, et al. Online nonlinear process monitoring using kernel partial least squares[J]. CIESC Journal, 2011, 62(9): 2555-2561.
|
13 |
赵春晖, 王福利, 姚远, 等. 基于时段的间歇过程统计建模、在线监测及质量预报[J]. 自动化学报, 2010, 36(3): 366-374.
|
|
Zhao C H, Wang F L, Yao Y, et al. Phase-based statistical modeling, online monitoring and quality prediction for batch processes[J]. Acta Automatica Sinica, 2010, 36(3): 366-374.
|
14 |
Yu W K, Zhao C H. Recursive exponential slow feature analysis for fine-scale adaptive processes monitoring with comprehensive operation status identification[J]. IEEE Transactions on Industrial Informatics, 2019, 15(6): 3311-3323.
|
15 |
Yu J, Qin S J. Multiway Gaussian mixture model based multiphase batch process monitoring[J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8585-8594.
|
16 |
Lu N Y, Gao F R, Wang F L. Sub-PCA modeling and on-line monitoring strategy for batch processes[J]. AIChE Journal, 2004, 50(1): 255-259.
|
17 |
Zhao C H, Wang F L, Lu N Y, et al. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes[J]. Journal of Process Control, 2007, 17(9): 728-741.
|
18 |
Ng Y S, Srinivasan R. An adjoined multi-model approach for monitoring batch and transient operations[J]. Computers & Chemical Engineering, 2009, 33(4): 887-902.
|
19 |
李征, 王普, 高学金, 等. 基于信息增量矩阵的多阶段间歇过程质量预测[J]. 化工学报, 2018, 69(12): 5164-5172.
|
|
Li Z, Wang P, Gao X J, et al. Information increment matrix based quality prediction for multi-phase batch processes[J]. CIESC Journal, 2018, 69(12): 5164-5172.
|
20 |
Zhao C H, Sun Y X. Step-wise sequential phase partition (SSPP) algorithm based statistical modeling and online process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 125: 109-120.
|
21 |
Qin Y, Zhao C H, Gao F R. An iterative two-step sequential phase partition (ITSPP) method for batch process modeling and online monitoring[J]. AIChE Journal, 2016, 62(7): 2358-2373.
|
22 |
赵春晖, 余万科, 高福荣. 非平稳间歇过程数据解析与状态监控: 回顾与展望[J]. 自动化学报, 2020, 46(10): 2072-2091.
|
|
Zhao C H, Yu W K, Gao F R. Data analytics and condition monitoring methods for nonstationary batch processes-current status and future[J]. Acta Automatica Sinica, 2020, 46(10): 2072-2091.
|
23 |
Hotelling H. Relations between two sets of variates[J]. Biometrika, 1936, 28(3/4): 321-377.
|
24 |
Yang Y Q, Xu L, Hu C Y. Extended adjacency matrix indices and their applications[J]. Journal of Chemical Information and Computer Sciences, 1994, 34(5): 1140-1145.
|
25 |
Wiskott L, Sejnowski T J. Slow feature analysis: unsupervised learning of invariances[J]. Neural Computation, 2002, 14(4): 715-770.
|
26 |
Shang C, Huang B, Yang F, et al. Slow feature analysis for monitoring and diagnosis of control performance[J]. Journal of Process Control, 2016, 39: 21-34.
|
27 |
Zhang H Y, Deng X G, Zhang Y C, et al. Dynamic nonlinear batch process fault detection and identification based on two-directional dynamic kernel slow feature analysis[J]. The Canadian Journal of Chemical Engineering, 2021, 99(1): 306-333.
|
28 |
齐咏生, 王普, 高学金, 等. 一种新的多阶段间歇过程在线监控策略[J]. 仪器仪表学报, 2011, 32(6): 1290-1297.
|
|
Qi Y S, Wang P, Gao X J, et al. Novel online monitoring strategy for multiphase batch processes[J]. Chinese Journal of Scientific Instrument, 2011, 32(6): 1290-1297.
|
29 |
Shang C, Huang B, Yang F, et al. Probabilistic slow feature analysis-based representation learning from massive process data for soft sensor modeling[J]. AIChE Journal, 2015, 61(12): 4126-4139.
|
30 |
Zhang H Y, Tian X M, Deng X G, et al. Multiphase batch process with transitions monitoring based on global preserving statistics slow feature analysis[J]. Neurocomputing, 2018, 293: 64-86.
|
31 |
Birol G, Ündey C, Çinar A. A modular simulation package for fed-batch fermentation: penicillin production[J]. Computers & Chemical Engineering, 2002, 26(11): 1553-1565.
|
32 |
刘毅, 王海清. Pensim仿真平台在青霉素发酵过程的应用研究[J]. 系统仿真学报, 2006, 18(12): 3524-3527.
|
|
Liu Y, Wang H Q. Pensim simulator and its application in penicillin fermentation process[J]. Journal of System Simulation, 2006, 18(12): 3524-3527.
|
33 |
Freeman J. A user's guide to principal components[J]. Journal of the Operational Research Society, 1992, 43(6): 641.
|
34 |
Kassidas A, MacGregor J F, Taylor P A. Synchronization of batch trajectories using dynamic time warping[J]. AIChE Journal, 1998, 44(4): 864-875.
|
35 |
Kourti T. Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups and grade transitions[J]. Journal of Chemometrics, 2003, 17(1): 93-109.
|
36 |
Wang X C, Wang P, Gao X J, et al. On-line quality prediction of batch processes using a new kernel multiway partial least squares method[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 158: 138-145.
|