CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2468-2485.DOI: 10.11949/0438-1157.20220050
• Reviews and monographs • Previous Articles Next Articles
Ming JIANG1,2(),Qiang ZHOU1,2,3()
Received:
2022-01-11
Revised:
2022-03-04
Online:
2022-06-30
Published:
2022-06-05
Contact:
Qiang ZHOU
通讯作者:
周强
作者简介:
蒋鸣(1988—),男,博士研究生,基金资助:
CLC Number:
Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds[J]. CIESC Journal, 2022, 73(6): 2468-2485.
蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485.
1 | Fan L S, Zhu C. Principles of Gas-solid Flows[M]. Cambridge: Cambridge University Press, 2005. |
2 | Tian P, Wei Y X, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
3 | 任文坡, 李振宇, 李雪静, 等. 渣油深度加氢裂化技术应用现状及新进展[J]. 化工进展, 2016, 35(8): 2309-2316. |
Ren W P, Li Z Y, Li X J, et al. Application situation and new progress of residuum deep hydrocracking technologies[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2309-2316. | |
4 | 程晓磊, 张鑫. 现代煤气化技术现状及发展趋势综述[J]. 煤质技术, 2021, 36(1): 1-9. |
Cheng X L, Zhang X. Summary of present situation and development trend of modern coal gasification technology[J]. Coal Quality Technology, 2021, 36(1): 1-9. | |
5 | Du S H, Yuan S Z, Zhou Q. Numerical investigation of co-gasification of coal and PET in a fluidized bed reactor[J]. Renewable Energy, 2021, 172: 424-439. |
6 | Xie J, Zhong W Q, Shao Y J, et al. Simulation of combustion of municipal solid waste and coal in an industrial-scale circulating fluidized bed boiler[J]. Energy & Fuels, 2017, 31(12): 14248-14261. |
7 | 任喜熙, 陈祁, 杨海平, 等. 基于CPFD方法的流化床生物质气化数值模拟[J]. 化工学报, 2020, 71(12): 5763-5773. |
Ren X X, Chen Q, Yang H P, et al. Numerical simulation of 3D fluidized bed biomass gasification based on CPFD[J]. CIESC Journal, 2020, 71(12): 5763-5773. | |
8 | Li P, Wang N N, Xu R Y, et al. Numerical study on pneumatic feeding characteristics of cold-flow fluidized bed reactor for biomass pyrolysis[J]. Powder Technology, 2021, 388: 318-332. |
9 | Fullmer W D, Hrenya C M. The clustering instability in rapid granular and gas-solid flows[J]. Annual Review of Fluid Mechanics, 2017, 49: 485-510. |
10 | Shaffer F, Gopalan B, Breault R W, et al. High speed imaging of particle flow fields in CFB risers[J]. Powder Technology, 2013, 242: 86-99. |
11 | 葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度:复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7): 1613-1620. |
Ge W, Liu X H, Ren Y, et al. From multi-scale to meso-scale: new challenges for simulation of complex processes in chemical engineering[J]. CIESC Journal, 2010, 61(7): 1613-1620. | |
12 | 李洪钟, 郭慕孙. 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52-62. |
Li H Z, Kwauk M. Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-62. | |
13 | Sundaresan S, Ozel A, Kolehmainen J. Toward constitutive models for momentum, species, and energy transport in gas-particle flows[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 61-81. |
14 | Ge W, Chang Q, Li C X, et al. Multiscale structures in particle-fluid systems: characterization, modeling, and simulation[J]. Chemical Engineering Science, 2019, 198: 198-223. |
15 | Parmentier J F, Simonin O, Delsart O. A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed[J]. AIChE Journal, 2012, 58(4): 1084-1098. |
16 | Lim K S, Zhu J X, Grace J R. Hydrodynamics of gas-solid fluidization[J]. International Journal of Multiphase Flow, 1995, 21: 141-193. |
17 | Anderson T B, Jackson R. A fluid mechanical description of fluidized beds. Equation of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539. |
18 | Anderson T B, Jackson R. Fluid mechanical description of fluidized beds. Stability of state of uniform fluidization[J]. Industrial & Engineering Chemistry Fundamentals, 1968, 7(1): 12-21. |
19 | Jackson R. The Dynamics of Fluidized Particles[M]. New York: Cambridge University Press, 2000. |
20 | Whitham G B. Linear and Nonlinear Waves[M]. New York: Wiley, 1974. |
21 | Derksen J J, Sundaresan S. Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds[J]. Journal of Fluid Mechanics, 2007, 587: 303-336. |
22 | Batchelor G K. Secondary instability of a gas-fluidized bed[J]. Journal of Fluid Mechanics, 1993, 257: 359-371. |
23 | Glasser B J, Sundaresan S, Kevrekidis I G. From bubbles to clusters in fluidized beds[J]. Physical Review Letters, 1998, 81(9): 1849-1852. |
24 | Sundaresan S. Instabilities in fluidized beds[J]. Annual Review of Fluid Mechanics, 2003, 35: 63-88. |
25 | Brey J J, Ruiz-Montero M J, Cubero D. Origin of density clustering in a freely evolving granular gas[J]. Physical Review E, 1999, 60(3): 3150-3157. |
26 | Garzó V. Instabilities in a free granular fluid described by the Enskog equation[J]. Physical Review E, 2005, 72(2): 021106. |
27 | Goldhirsch I, Zanetti G. Clustering instability in dissipative gases[J]. Physical Review Letters, 1993, 70(11): 1619-1622. |
28 | Tan M L, Goldhirsch I. Rapid granular flows as mesoscopic systems[J]. Physical Review Letters, 1998, 81(14): 3022-3025. |
29 | Goldhirsch I. Rapid granular flows[J]. Annual Review of Fluid Mechanics, 2003, 35: 267-293. |
30 | Maxey M R. The gravitational settling of aerosol-particles in homogeneous turbulence and random flow-fields[J]. Journal of Fluid Mechanics, 1987, 174: 441-465. |
31 | Hogan R C, Cuzzi J N. Stokes and Reynolds number dependence of preferential particle concentration in simulated three-dimensional turbulence[J]. Physics of Fluids, 2001, 13(10): 2938-2945. |
32 | Balachandar S, Eaton J K. Turbulent dispersed multiphase flow[J]. Annual Review of Fluid Mechanics, 2010, 42: 111-133. |
33 | Monchaux R, Bourgoin M, Cartellier A. Analyzing preferential concentration and clustering of inertial particles in turbulence[J]. International Journal of Multiphase Flow, 2012, 40: 1-18. |
34 | Bragg A D, Ireland P J, Collins L R. Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence[J]. Physical Review E, 2015, 92(2): 023029. |
35 | Goto S, Saito Y, Kawahara G. Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers[J]. Physical Review Fluids, 2017, 2(6): 064603. |
36 | Petersen A J, Baker L, Coletti F. Experimental study of inertial particles clustering and settling in homogeneous turbulence[J]. Journal of Fluid Mechanics, 2019, 864: 925-970. |
37 | Goto S, Vassilicos J C. Sweep-stick mechanism of heavy particle clustering in fluid turbulence[J]. Physical Review Letters, 2008, 100(5): 054503. |
38 | Bec J, Homann H, Ray S S. Gravity-driven enhancement of heavy particle clustering in turbulent flow[J]. Physical Review Letters, 2014, 112(18): 184501. |
39 | Gustavsson K, Vajedi S, Mehlig B. Clustering of particles falling in a turbulent flow[J]. Physical Review Letters, 2014, 112(21): 214501. |
40 | Falkinhoff F, Obligado M, Bourgoin M, et al. Preferential concentration of free-falling heavy particles in turbulence[J]. Physical Review Letters, 2020, 125(6): 064504. |
41 | Oka S, Goto S. Generalized sweep-stick mechanism of inertial-particle clustering in turbulence[J]. Physical Review Fluids, 2021, 6(4): 044605. |
42 | Wilkinson M, Mehlig B. Caustics in turbulent aerosols[J]. Europhysics Letters (EPL), 2005, 71(2): 186-192. |
43 | Wilkinson M, Mehlig B, Bezuglyy V. Caustic activation of rain showers[J]. Physical Review Letters, 2006, 97(4): 048501. |
44 | Gustavsson K, Mehlig B. Distribution of relative velocities in turbulent aerosols[J]. Physical Review E, 2011, 84(4): 045304. |
45 | Gustavsson K, Mehlig B. Relative velocities of inertial particles in turbulent aerosols[J]. Journal of Turbulence, 2014, 15(1): 34-69. |
46 | Ravichandran S, Govindarajan R. Caustics and clustering in the vicinity of a vortex[J]. Physics of Fluids, 2015, 27(3): 033305. |
47 | Falkovich G, Fouxon A, Stepanov M G. Acceleration of rain initiation by cloud turbulence[J]. Nature, 2002, 419(6903): 151-154. |
48 | Vreman A W, Kuerten J G M. Turbulent channel flow past a moving array of spheres[J]. Journal of Fluid Mechanics, 2018, 856: 580-632. |
49 | Fortes A F, Joseph D D, Lundgren T S. Nonlinear mechanics of fluidization of beds of spherical particles[J]. Journal of Fluid Mechanics, 1987, 177: 467-483. |
50 | Wu J, Manasseh R. Dynamics of dual-particles settling under gravity[J]. International Journal of Multiphase Flow, 1998, 24(8): 1343-1358. |
51 | Kajishima T. Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence[J]. International Journal Heat and Fluid Flow, 2004, 25(5): 721-728. |
52 | Kajishima T, Takiguchi S. Interaction between particle clusters and particle-induced turbulence[J]. International Journal Heat and Fluid Flow, 2002, 23(5): 639-646. |
53 | Huisman S G, Barois T, Bourgoin M, et al. Columnar structure formation of a dilute suspension of settling spherical particles in a quiescent fluid[J]. Physical Review Fluids, 2016, 1(7): 074204. |
54 | Uhlmann M, Doychev T. Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion[J]. Journal of Fluid Mechanics, 2014, 752: 310-348. |
55 | Chouippe A, Uhlmann M. On the influence of forced homogeneous-isotropic turbulence on the settling and clustering of finite-size particles[J]. Acta Mechanica, 2019, 230(2): 387-412. |
56 | Capecelatro J, Pepiot P, Desjardins O. Numerical characterization and modeling of particle clustering in wall-bounded vertical risers[J]. Chemical Engineering Journal, 2014, 245: 295-310. |
57 | Yang K, Zhao L H, Andersson H I. Preferential particle concentration in wall-bounded turbulence with zero skin friction[J]. Physics of Fluids, 2017, 29(11): 113302. |
58 | Bragg A D, Richter D H, Wang G Q. Mechanisms governing the settling velocities and spatial distributions of inertial particles in wall-bounded turbulence[J]. Physical Review Fluids, 2021, 6(6): 064302. |
59 | Esteghamatian A, Zaki T A. The dynamics of settling particles in vertical channel flows: gravity, lift and particle clusters[J]. Journal of Fluid Mechanics, 2021, 918: A33. |
60 | Prigogine I. Introduction to Thermodynamics of Irreversible Processes[M]. 3rd ed. New York: Interscience Publishers, 1967. |
61 | Zhang C X, Qian W Z, Wei F. Instability of uniform fluidization[J]. Chemical Engineering Science, 2017, 173: 187-195. |
62 | 张晨曦, 蔡达理, 贾瞾, 等. 流化床中气固均匀分布的失稳现象[J]. 化工进展, 2019, 38(1): 155-170. |
Zhang C X, Cai D L, Jia Z, et al. Non-uniform gas solids distribution in fluidized beds[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 155-170. | |
63 | Breault R W. An analysis of clustering flows in a CFB riser[J]. Powder Technology, 2012, 220: 79-87. |
64 | Li J H, Kwauk M. Particle-fluid Two-phase Flow: the Energy-minimization Multi-scale Method[M]. Beijing: Metallurgical Industry Press, 1994. |
65 | Zhang J Y, Ge W, Li J H. Simulation of heterogeneous structures and analysis of energy consumption in particle-fluid systems with pseudo-particle modeling[J]. Chemical Engineering Science, 2005, 60(11): 3091-3099. |
66 | Cui H H, Chang Q, Chen J H, et al. PR-DNS verification of the stability condition in the EMMS model[J]. Chemical Engineering Journal, 2020, 401: 125999. |
67 | Tian Y J, Geng J W, Wang W. Structure-dependent analysis of energy dissipation in gas-solid flows: beyond nonequilibrium thermodynamics[J]. Chemical Engineering Science, 2017, 171: 271-281. |
68 | Du M J, Hu S W, Chen J H, et al. Extremum characteristics of energy consumption in fluidization analyzed by using EMMS[J]. Chemical Engineering Journal, 2018, 342: 386-394. |
69 | Zhao B D, Wang J W. Statistical foundation of EMMS-based two-fluid models for heterogeneous gas-solid flow[J]. Chemical Engineering Science, 2021, 241: 116678. |
70 | Wang J W, Zhao B D, Li J H. Toward a mesoscale-structure-based kinetic theory for heterogeneous gas-solid flow: particle velocity distribution function[J]. AIChE Journal, 2016, 62(8): 2649-2657. |
71 | Liu X W, Wang L M, Ge W. Meso-scale statistical properties of gas-solid flow — a direct numerical simulation (DNS) study[J]. AIChE Journal, 2017, 63(1): 3-14. |
72 | Zhao B D, Wang J W. Unification of particle velocity distribution functions in gas-solid flow[J]. Chemical Engineering Science, 2018, 177: 333-339. |
73 | 王婧, 王军武. 气固两相流中颗粒速度分布函数统计分析[J]. 中国粉体技术, 2018, 24(5): 1-5. |
Wang J, Wang J W. Statistics of particle velocity distribution function in gas-solid flow[J]. China Powder Science and Technology, 2018, 24(5): 1-5. | |
74 | McKeen T, Pugsley T. Simulation and experimental validation of a freely bubbling bed of FCC catalyst[J]. Powder Technology, 2003, 129(1/2/3): 139-152. |
75 | Fullmer W D, Liu G D, Yin X L, et al. Clustering instabilities in sedimenting fluid-solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2017, 823: 433-469. |
76 | Chen X, Song N, Jiang M, et al. A microscopic gas-solid drag model considering the effect of interface between dilute and dense phases[J]. International Journal of Multiphase Flow, 2020, 128: 103266. |
77 | Cahyadi A, Anantharaman A, Yang S L, et al. Review of cluster characteristics in circulating fluidized bed (CFB) risers[J]. Chemical Engineering Science, 2017, 158: 70-95. |
78 | Liu X W, Ge W, Wang L M. Scale and structure dependent drag in gas-solid flows[J]. AIChE Journal, 2020, 66(4): e16883. |
79 | Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94. |
80 | Wen C Y. Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series, 1966, 62: 100-111. |
81 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. Boston: Academic Press, 1994. |
82 | Beetstra R, van der Hoef M A, Kuipers J A M. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres[J]. AIChE Journal, 2007, 53(2): 489-501. |
83 | Agrawal K, Loezos P N, Syamlal M, et al. The role of meso-scale structures in rapid gas-solid flows[J]. Journal of Fluid Mechanics, 2001, 445: 151-185. |
84 | Igci Y, Andrews A T I, Sundaresan S, et al. Filtered two-fluid models for fluidized gas-particle suspensions[J]. AIChE Journal, 2008, 54(6): 1431-1448. |
85 | Ozel A, Fede P, Simonin O. Development of filtered Euler-Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses[J]. International Journal of Multiphase Flow, 2013, 55: 43-63. |
86 | Wang S Y, Shen Z H, Lu H L, et al. Numerical predictions of flow behavior and cluster size of particles in riser with particle rotation model and cluster-based approach[J]. Chemical Engineering Science, 2008, 63(16): 4116-4125. |
87 | Zou L M, Guo Y C, Chan C K. Cluster-based drag coefficient model for simulating gas-solid flow in a fast-fluidized bed[J]. Chemical Engineering Science, 2008, 63(4): 1052-1061. |
88 | Syamlal M, O'brien T J. The derivation of a drag coefficient from velocity-voidage correlations[R]. Morgantown: US Department of Energy, Office of Fossil Energy, 1987. |
89 | Niewland J J, Huizenga P, Kuipers J A M, et al. Hydrodynamic modelling of circulating fluidised beds[J]. Chemical Engineering Science, 1994, 49(24): 5803-5811. |
90 | Gao J S, Lan X Y, Fan Y P, et al. CFD modeling and validation of the turbulent fluidized bed of FCC particles[J]. AIChE Journal, 2009, 55(7): 1680-1694. |
91 | 严超宇, 卢春喜, 王德武, 等. 气-固环流反应器内瞬态流体力学特性的数值模拟[J]. 化工学报, 2010, 61(9): 2225-2234. |
Yan C Y, Lu C X, Wang D W, et al. Numerical simulation of transient hydrodynamics in gas-solid airlift loop reactor[J]. CIESC Journal, 2010, 61(9): 2225-2234. | |
92 | Wu Y Y, Shi X G, Gao J S, et al. A four-zone drag model based on cluster for simulating gas-solids flow in turbulent fluidized beds[J]. Chemical Engineering and Processing - Process Intensification, 2020, 155: 108056. |
93 | Syamlal M, O'brien T J. Simulation of granular layer inversion in liquid fluidized-beds[J]. International Journal of Multiphase Flow, 1988, 14(4): 473-481. |
94 | Syamlal M, O'brien T J. Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed[J]. AIChE Journal, 2003, 49(11): 2793-2801. |
95 | Zimmermann S, Taghipour F. CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors[J]. Industrial & Engineering Chemistry Research, 2005, 44(26): 9818-9827. |
96 | Almuttahar A, Taghipour F. Computational fluid dynamics of high density circulating fluidized bed riser: study of modeling parameters[J]. Powder Technology, 2008, 185(1): 11-23. |
97 | Almuttahar A, Taghipour F. Computational fluid dynamics of a circulating fluidized bed under various fluidization conditions[J]. Chemical Engineering Science, 2008, 63(6): 1696-1709. |
98 | Vejahati F, Mahinpey N, Ellis N, et al. CFD simulation of gas-solid bubbling fluidized bed: a new method for adjusting drag law[J]. The Canadian Journal of Chemical Engineering, 2009, 87(1): 19-30. |
99 | Lu L Q, Benyahia S, Li T W. An efficient and reliable predictive method for fluidized bed simulation[J]. AIChE Journal, 2017, 63(12): 5320-5334. |
100 | 肖海涛, 祁海鹰, 由长福, 等. 循环流化床气固曳力模型[J]. 计算物理, 2003, 20(1): 25-30. |
Xiao H T, Qi H Y, You C F, et al. Theoretical model of drag between gas and solid phase in circulating fluidized bed[J]. Chinese Journal of Computation Physics, 2003, 20(1): 25-30. | |
101 | Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80. |
102 | Yang N, Wang W, Ge W, et al. Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5548-5561. |
103 | 李飞, 陈程, 王锦生, 等. 稠密气固两相QL-EMMS曳力模型及改进[J]. 工程热物理学报, 2011, 32(1): 75-79. |
Li F, Chen C, Wang J S, et al. QL-EMMS drag model & its revision for fluidized dense gas-solid two-phase flow[J]. Journal of Engineering Thermophysics, 2011, 32(1): 75-79. | |
104 | 陈程, 祁海鹰. EMMS曳力模型及其颗粒团模型的构建和检验[J]. 化工学报, 2014, 65(6): 2003-2012. |
Chen C, Qi H Y. Development and validation of cluster and EMMS drag model[J]. CIESC Journal, 2014, 65(6): 2003-2012. | |
105 | 戴群特, 时凯, 祁海鹰. 基于介尺度特性分析的流态化过程数值方法[J]. 煤炭学报, 2016, 41(10): 2508-2513. |
Dai Q T, Shi K, Qi H Y. Research progress of simulation methods of fluidization process in CFB based on meso-scale characteristics analysis[J]. Journal of China Coal Society, 2016, 41(10): 2508-2513. | |
106 | Hu S W, Liu X H. A simple and general sub-grid drag model for gas-solid fast fluidization[J]. Chemical Engineering Journal, 2021, 421: 129922. |
107 | Jiang X X, Li D, Wang S Y, et al. Clusters intermittent simulations using dynamic cluster structure-dependent drag model in gas-particles risers[J]. Chemical Engineering Science, 2020, 221: 115643. |
108 | Shi Z S, Wang W, Li J H. A bubble-based EMMS model for gas-solid bubbling fluidization[J]. Chemical Engineering Science, 2011, 66(22): 5541-5555. |
109 | Du S H, Liu L J. Numerical simulation of bubbling fluidization using a local bubble-structure-dependent drag model[J]. The Canadian Journal of Chemical Engineering, 2019, 97: 1741-1755. |
110 | 佟颖, Nouman Ahmad, 鲁波娜, 等. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692. |
Tong Y, Nouman A, Lu B N, et al. Numerical investigation of bubbling fluidized bed with binary particle mixture using EMMS mesoscale drag model[J]. CIESC Journal, 2019, 70(5): 1682-1692. | |
111 | Qin Z Y, Zhou Q, Wang J W. An EMMS drag model for coarse grid simulation of polydisperse gas-solid flow in circulating fluidized bed risers[J]. Chemical Engineering Science, 2019, 207: 358-378. |
112 | Du S H, Liu L J. A bubble structure dependent drag model for CFD simulation of bi-disperse gas-solid flow in bubbling fluidizations[J]. Canadian Journal of Chemical Engineering, 2021, 99(12): 2771-2788. |
113 | Hu S W, Liu X H. A CFD-PBM-EMMS integrated model applicable for heterogeneous gas-solid flow[J]. Chemical Engineering Journal, 2020, 383: 123122. |
114 | 王维, 洪坤, 鲁波娜, 等. 流态化模拟:基于介尺度结构的多尺度CFD[J]. 化工学报, 2013, 64(1): 95-106. |
Wang W, Hong K, Lu B N, et al. Fluidized bed simulation: structure-dependent multiscale CFD[J]. CIESC Journal, 2013, 64(1): 95-106. | |
115 | 祁海鹰, 戴群特, 陈程. 大型流态化多相流数值模拟的关键科学问题: 曳力模型的理论分析[J]. 力学与实践, 2014, 36(3): 269-277. |
Qi H Y, Dai Q T, Chen C. The key scientific problems in the eulerian modeling of large-scale multi-phase flows—drag model[J]. Mechanics in Engineering, 2014, 36(3): 269-277. | |
116 | Wang W, Chen Y. Mesoscale modeling: beyond local equilibrium assumption for multiphase flow[M]//Advances in Chemical Engineering. New York: Academic Press, 2015: 193-277. |
117 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
118 | Zhou Q, Wang J W, Li J H. Three-dimensional simulation of dense suspension upflow regime in high-density CFB risers with EMMS-based two-fluid model[J]. Chemical Engineering Science, 2014, 107: 206-217. |
119 | Adnan M, Sun J, Ahmad N, et al. Verification and validation of the DDPM-EMMS model for numerical simulations of bubbling, turbulent and circulating fluidized beds[J]. Powder Technology, 2021, 379: 69-88. |
120 | Lu B N, Niu Y, Chen F G, et al. Energy-minimization multiscale based mesoscale modeling and applications in gas-fluidized catalytic reactors[J]. Reviews in Chemical Engineering, 2019, 35(8): 879-915. |
121 | Capecelatro J, Desjardins O, Fox R O. On fluid-particle dynamics in fully developed cluster-induced turbulence[J]. Journal of Fluid Mechanics, 2015, 780: 578-635. |
122 | Schneiderbauer S. A spatially-averaged two-fluid model for dense large-scale gas-solid flows[J]. AIChE Journal, 2017, 63(8): 3544-3562. |
123 | Schneiderbauer S, Pirker S. Filtered and heterogeneity-based subgrid modifications for gas-solid drag and solid stresses in bubbling fluidized beds[J]. AIChE Journal, 2014, 60(3): 839-854. |
124 | Radl S, Sundaresan S. A drag model for filtered Euler-Lagrange simulations of clustered gas-particle suspensions[J]. Chemical Engineering Science, 2014, 117: 416-425. |
125 | Ozel A, Kolehmainen J, Radl S, et al. Fluid and particle coarsening of drag force for discrete-parcel approach[J]. Chemical Engineering Science, 2016, 155: 258-267. |
126 | Lei H, Liao J W, Zhu L T, et al. CFD-DEM modeling of filtered fluid-particle drag and heat transfer in bidisperse gas-solid flows[J]. Chemical Engineering Science, 2021, 246: 116896. |
127 | Rubinstein G J, Ozel A, Yin X L, et al. Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the drag force[J]. Journal of Fluid Mechanics, 2017, 833: 599-630. |
128 | Fullmer W D, Hrenya C M. Quantitative assessment of fine-grid kinetic-theory-based predictions of mean-slip in unbounded fluidization[J]. AIChE Journal, 2016, 62(1): 11-17. |
129 | Lu L Q, Liu X W, Li T W, et al. Assessing the capability of continuum and discrete particle methods to simulate gas-solids flow using DNS predictions as a benchmark[J]. Powder Technology, 2017, 321: 301-309. |
130 | Hrenya C M, Galvin J E, Wildman R D. Evidence of higher-order effects in thermally driven rapid granular flows[J]. Journal of Fluid Mechanics, 2008, 598: 429-450. |
131 | Cloete J H, Cloete S, Municchi F, et al. The sensitivity of filtered two fluid model to the underlying resolved simulation setup[J]. Powder Technology, 2017, 316: 265-277. |
132 | Zhu L T, Chen X Z, Luo Z H. Analysis and development of homogeneous drag closure for filtered mesoscale modeling of fluidized gas-particle flows[J]. Chemical Engineering Science, 2021, 229: 116147. |
133 | Sarkar A, Milioli F E, Ozarkar S, et al. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations[J]. Chemical Engineering Science, 2016, 152: 443-456. |
134 | Cloete J H, Cloete S, Municchi F, et al. Development and verification of anisotropic drag closures for filtered two fluid models[J]. Chemical Engineering Science, 2018, 192: 930-954. |
135 | Milioli C C, Milioli F E, Holloway W, et al. Filtered two-fluid models of fluidized gas-particle flows: new constitutive relations[J]. AIChE Journal, 2013, 59(9): 3265-3275. |
136 | Jiang M, Zhang Y, Yu Y X, et al. A scale-independent modeling method for filtered drag in fluidized gas-particle flows[J]. Powder Technology, 2021, 394: 1050-1076. |
137 | Zhang D Z, Vanderheyden W B. The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows[J]. International Journal of Multiphase Flow, 2002, 28(5): 805-822. |
138 | de Wilde J. Reformulating and quantifying the generalized added mass in filtered gas-solid flow models[J]. Physics of Fluids, 2005, 17(11): 113304. |
139 | de Wilde J. The generalized added mass revised[J]. Physics of Fluids, 2007, 19(5): 058103. |
140 | Rauchenzauner S, Schneiderbauer S. A dynamic anisotropic spatially-averaged two-fluid model for moderately dense gas-particle flows[J]. International Journal of Multiphase Flow, 2020, 126: 103237. |
141 | Rauchenzauner S, Schneiderbauer S. A dynamic multiphase turbulence model for coarse-grid simulations of fluidized gas-particle suspensions[J]. Chemical Engineering Science, 2022, 247: 117104. |
142 | Cloete J H, Cloete S, Radl S, et al. On the choice of closure complexity in anisotropic drag closures for filtered two fluid models[J]. Chemical Engineering Science, 2019, 207: 379-396. |
143 | Ozel A, Gu Y L, Milioli C C, et al. Towards filtered drag force model for non-cohesive and cohesive particle-gas flows[J]. Physics of Fluids, 2017, 29(10): 103308. |
144 | Hrenya C M, Sinclair J L. Effects of particle-phase turbulence in gas-solid flows[J]. AIChE Journal, 1997, 43(4): 853-869. |
145 | Jiang Y D, Kolehmainen J, Gu Y L, et al. Neural-network-based filtered drag model for gas-particle flows[J]. Powder Technology, 2019, 346: 403-413. |
146 | Jiang M, Chen X, Zhou Q. A gas pressure gradient-dependent subgrid drift velocity model for drag prediction in fluidized gas-particle flows[J]. AIChE Journal, 2020, 66(4): e16884. |
147 | Zhang Y, Jiang M, Chen X, et al. Modeling of the filtered drag force in gas-solid flows via a deep learning approach[J]. Chemical Engineering Science, 2020, 225: 115835. |
148 | Jiang Y D, Chen X, Kolehmainen J, et al. Development of data-driven filtered drag model for industrial-scale fluidized beds[J]. Chemical Engineering Science, 2021, 230: 116235. |
149 | Ouyang B, Zhu L T, Su Y H, et al. A hybrid mesoscale closure combining CFD and deep learning for coarse-grid prediction of gas-particle flow dynamics[J]. Chemical Engineering Science, 2022, 248: 117268. |
150 | Zhu L T, Tang J X, Luo Z H. Machine learning to assist filtered two-fluid model development for dense gas-particle flows[J]. AIChE Journal, 2020, 66(6): e16973. |
151 | Zhu L T, Ouyang B, Lei H, et al. Conventional and data-driven modeling of filtered drag, heat transfer, and reaction rate in gas-particle flows[J]. AIChE Journal, 2021, 67(8): e17299. |
152 | 朱礼涛, 欧阳博, 张希宝, 等. 机器学习在多相反应器中的应用进展[J]. 化工进展, 2021, 40(4): 1699-1714. |
Zhu L T, Ouyang B, Zhang X B, et al. Progress on application of machine learning to multiphase reactors[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1699-1714. | |
153 | Schneiderbauer S, Saeedipour M. Approximate deconvolution model for the simulation of turbulent gas-solid flows: an a priori analysis[J]. Physics of Fluids, 2018, 30(2): 023301. |
154 | Schneiderbauer S, Saeedipour M. Numerical simulation of turbulent gas-solid flow using an approximate deconvolution model[J]. International Journal of Multiphase Flow, 2019, 114: 287-302. |
155 | van der Hoef M A, van Sint Annaland M, Deen N G, et al. Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy[J]. Annual Review of Fluid Mechanics, 2008, 40: 47-70. |
156 | Subramaniam S. Lagrangian-Eulerian methods for multiphase flows[J]. Progress Energy Combustion Science, 2013, 39(2/3): 215-245. |
157 | Capecelatro J, Desjardins O, Fox R O. Numerical study of collisional particle dynamics in cluster-induced turbulence[J]. Journal of Fluid Mechanics, 2014, 747: R2. |
158 | Mouallem J, Chavez-Cussy N, Niaki S R A, et al. On the effects of the flow macro-scale over meso-scale filtered parameters in gas-solid riser flows[J]. Chemical Engineering Science, 2018, 182: 200-211. |
159 | Niaki S R A, Mouallem J, Chavez-Cussy N, et al. Improving the accuracy of two-fluid sub-grid modeling of dense gas-solid fluidized flows[J]. Chemical Engineering Science, 2021, 229: 116021. |
160 | Huang Z Q, Zhang C, Jiang M, et al. Development of a filtered interphase heat transfer model based on fine-grid simulations of gas-solid flows[J]. AIChE Journal, 2020, 66(1): e16755. |
161 | Igci Y, Sundaresan S. Verification of filtered two-fluid models for gas-particle flows in risers[J]. AIChE Journal, 2011, 57(10): 2691-2707. |
162 | Andrews A T, Loezos P N, Sundaresan S. Coarse-grid simulation of gas-particle flows in vertical risers[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 6022-6037. |
163 | Gao X, Li T W, Sarkar A, et al. Development and validation of an enhanced filtered drag model for simulating gas-solid fluidization of Geldart A particles in all flow regimes[J]. Chemical Engineering Science, 2018, 184: 33-51. |
164 | Zhu L T, Liu Y X, Tang J X, et al. A material-property-dependent sub-grid drag model for coarse-grained simulation of 3D large-scale CFB risers[J]. Chemical Engineering Science, 2019, 204: 228-245. |
165 | Zhu L T, Yang Y N, Pan D T, et al. Capability assessment of coarse-grid simulation of gas-particle riser flow using sub-grid drag closures[J]. Chemical Engineering Science, 2020, 213: 115410. |
166 | Bassenne M, Moin P, Urzay J. Wavelet multiresolution analysis of particle-laden turbulence[J]. Physical Review Fluids, 2018, 3(8): 084304. |
167 | Gao X, Li T W, Rogers W A. Assessment of mesoscale solid stress in coarse-grid TFM simulation of Geldart A particles in all fluidization regimes[J]. AIChE Journal, 2018, 64(10): 3565-3581. |
168 | Wei F, Lin H F, Cheng Y, et al. Profiles of particle velocity and solids fraction in a high-density riser[J]. Powder Technology, 1998, 100(2/3): 183-189. |
169 | Holloway W, Yin X L, Sundaresan S. Fluid-particle drag in inertial polydisperse gas-solid suspensions[J]. AIChE Journal, 2010, 56(8): 1995-2004. |
170 | Sarkar A, Sun X, Sundaresan S. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows[J]. Chemical Engineering Science, 2013, 104: 399-412. |
171 | Lu B, Wang W, Li J H, et al. Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5487-5494. |
172 | 鲁波娜, 程从礼, 鲁维民, 等. 基于多尺度模型的MIP提升管反应历程数值模拟[J]. 化工学报, 2013, 64(6): 1983-1992. |
Lu B N, Cheng C L, Lu W M, et al. Numerical simulation of reaction process in MIP riser based on multi-scale model[J]. CIESC Journal, 2013, 64(6): 1983-1992. | |
173 | 刘雅宁, 鲁波娜, 卢利强, 等. 基于EMMS模型的大型催化裂化装置再生器气固分布数值模拟[J]. 化工学报, 2015, 66(8): 2911-2919. |
Liu Y N, Lu B N, Lu L Q, et al. EMMS-based numerical simulation on gas and solids distribution in large-scale FCC regenerators[J]. CIESC Journal, 2015, 66(8): 2911-2919. | |
174 | Lu B N, Luo H, Li H, et al. Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model[J]. Chemical Engineering Science, 2016, 143: 341-350. |
175 | Lu B N, Zhang J Y, Luo H, et al. Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors[J]. Chemical Engineering Science, 2017, 171: 244-255. |
176 | Liu X C, Xu J, Ge W, et al. Long-time simulation of catalytic MTO reaction in a fluidized bed reactor with a coarse-grained discrete particle method—EMMS-DPM[J]. Chemical Engineering Journal, 2020, 389: 124135. |
177 | 洪坤, 曹曼倩, 王文轩, 等. 甲醇制烯烃流化床内流化特性的多尺度CFD模拟[J]. 过程工程学报, 2021, 21(9): 1012-1021. |
Hong K, Cao M Q, Wang W X, et al. Multi-scale CFD simulation of fluidization characteristics in a methanolto-olefin fluidized bed[J]. The Chinese Journal of Process Engineering, 2021, 21(9): 1012-1021. | |
178 | Liu Y, Huo P J, Li X H, et al. Numerical study of coal gasification in a dual-CFB plant based on the generalized drag model QC-EMMS[J]. Fuel Processing Technology, 2020, 203: 106363. |
179 | Liu Y, Huo P J, Li X H, et al. Numerical analysis of the operating characteristics of a large-scale CFB coal-gasification reactor with the QC-EMMS drag model[J]. The Canadian Journal of Chemical Engineering, 2021, 99(6): 1390-1403. |
180 | Nikolopoulos A, Stroh A, Zeneli M, et al. Numerical investigation and comparison of coarse grain CFD-DEM and TFM in the case of a 1 MWth fluidized bed carbonator simulation[J]. Chemical Engineering Science, 2017, 163: 189-205. |
181 | Tu Q Y, Wang H G. CPFD study of a full-loop three-dimensional pilot-scale circulating fluidized bed based on EMMS drag model[J]. Powder Technology, 2018, 323: 534-547. |
182 | Schneiderbauer S, Puttinger S, Pirker S, et al. CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors[J]. Chemical Engineering Journal, 2015, 264: 99-112. |
183 | Kraft S, Kirnbauer F, Hofbauer H. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input[J]. Applied Energy, 2017, 190: 408-420. |
184 | Luo H, Lin W G, Song W L, et al. Three dimensional full-loop CFD simulation of hydrodynamics in a pilot scale dual fluidized bed system for biomass gasification[J]. Fuel Processing Technology, 2019, 195: 106146. |
185 | Yu J, Gao X, Lu L Q, et al. Validation of a filtered drag model for solid residence time distribution (RTD) prediction in a pilot-scale FCC riser[J]. Powder Technology, 2021, 378: 339-347. |
186 | Yu W C, Fede P, Yazdanpanah M, et al. Gas-solid fluidized bed simulations using the filtered approach: validation against pilot-scale experiments[J]. Chemical Engineering Science, 2020, 217: 115472. |
187 | Schneiderbauer S, Kinaci M E, Hauzenberger F. Computational fluid dynamics simulation of iron ore reduction in industrial-scale fluidized beds[J]. Steel Research International, 2020, 91(12): 2000322. |
[1] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[2] | Shaohua ZHOU, Feilong ZHAN, Guoliang DING, Hao ZHANG, Yanpo SHAO, Yantao LIU, Zheming GAO. Experimental study of flow noise in short tube throttle valve and noise reduction measures [J]. CIESC Journal, 2023, 74(S1): 113-121. |
[3] | Kaijie WEN, Li GUO, Zhaojie XIA, Jianhua CHEN. A rapid simulation method of gas-solid flow by coupling CFD and deep learning [J]. CIESC Journal, 2023, 74(9): 3775-3785. |
[4] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Dian LIN, Guomei JIANG, Xiubin XU, Bo ZHAO, Dongmei LIU, Xu WU. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings [J]. CIESC Journal, 2023, 74(8): 3438-3445. |
[7] | Chao NIU, Shengqiang SHEN, Yan YANG, Bonian PAN, Yiqiao LI. Flow process calculation and performance analysis of methane BOG ejector [J]. CIESC Journal, 2023, 74(7): 2858-2868. |
[8] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[9] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[10] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[11] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
[12] | Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012. |
[13] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
[14] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[15] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 268
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 635
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||