CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2486-2495.DOI: 10.11949/0438-1157.20220152
• Reviews and monographs • Previous Articles Next Articles
Lingfei KONG(),Yanpei CHEN(),Wei WANG
Received:
2022-01-26
Revised:
2022-04-11
Online:
2022-06-30
Published:
2022-06-05
Contact:
Yanpei CHEN
通讯作者:
陈延佩
作者简介:
孔令菲(1997—),女,硕士研究生,基金资助:
CLC Number:
Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization[J]. CIESC Journal, 2022, 73(6): 2486-2495.
孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495.
1 | Sun Z N, Zhang C, Zhu J. Numerical investigations on gas-solid flow in circulating fluidized bed risers using a new cluster-based drag model[J]. Particuology, 2022, 63: 9-23. |
2 | Du S H, Liu L J. Numerical simulation of bubbling fluidization using a local bubble-structure-dependent drag model[J]. The Canadian Journal of Chemical Engineering, 2019, 97(S1): 1741-1755. |
3 | Wang Y J, Li J J, Zhang L, et al. Phase-field study on the effect of initial particle aggregation on the transient coarsening behaviors[J]. Modelling and Simulation in Materials Science and Engineering, 2020, 28(7): 075007. |
4 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
5 | Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. |
6 | Jiang X X, Wang S Y, Shao B L, et al. Analysis of dissipative mechanisms of cluster heterogeneous structures in gas-solid riser[J]. Chemical Engineering Science, 2021, 246: 116878. |
7 | Fong K O, Coletti F. Experimental analysis of particle clustering in moderately dense gas–solid flow[J]. Journal of Fluid Mechanics, 2022, 933: A6. |
8 | Fabre A, Salameh S, Ciacchi L C, et al. Contact mechanics of highly porous oxide nanoparticle agglomerates[J]. Journal of Nanoparticle Research: an Interdisciplinary Forum for Nanoscale Science and Technology, 2016, 18: 200. |
9 | van Ommen J R, Valverde J M, Pfeffer R. Fluidization of nanopowders: a review[J]. Journal of Nanoparticle Research: an Interdisciplinary Forum for Nanoscale Science and Technology, 2012, 14(3): 1-29. |
10 | Morooka S, Kusakabe K, Kobata A, et al. Fluidization state of ultrafine powders[J]. Journal of Chemical Engineering of Japan, 1988, 21(1): 41-46. |
11 | Grass R N, Tsantilis S, Pratsinis S E. Design of high-temperature, gas-phase synthesis of hard or soft TiO2 agglomerates[J]. AIChE Journal, 2006, 52(4): 1318-1325. |
12 | Teleki A, Wengeler R, Wengeler L, et al. Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion[J]. Powder Technology, 2008, 181(3): 292-300. |
13 | Liu H P, Wang S W. Fluidization behaviors of nanoparticle agglomerates with high initial bed heights[J]. Powder Technology, 2021, 388: 122-128. |
14 | Wang Y, Gu G S, Wei F, et al. Fluidization and agglomerate structure of SiO2 nanoparticles[J]. Powder Technology, 2002, 124(1/2): 152-159. |
15 | Li S Q, Marshall J S, Liu G Q, et al. Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering[J]. Progress in Energy and Combustion Science, 2011, 37(6): 633-668. |
16 | Durhuus F L, Wandall L H, Boisen M H, et al. Simulated clustering dynamics of colloidal magnetic nanoparticles[J]. Nanoscale, 2021, 13(3): 1970-1981. |
17 | Wang H F, Chen Y P, Wang W. Scale-dependent nonequilibrium features in a bubbling fluidized bed[J]. AIChE Journal, 2018, 64(7): 2364-2378. |
18 | Ma G, Zou Y X, Chen Y, et al. Spatial correlation and temporal evolution of plastic heterogeneity in sheared granular materials[J]. Powder Technology, 2021, 378: 263-273. |
19 | Zhang M C, Chen T, Fan H J. Mesoscale analysis on clusters in conjunction with fast fluidized bed modeling[J]. Powder Technology, 2022, 396: 241-259. |
20 | Brilliantov N V, Albers N, Spahn F, et al. Collision dynamics of granular particles with adhesion[J]. Physical Review E, Covering Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(5): 051302. |
21 | McMillan J, Shaffer F, Gopalan B, et al. Particle cluster dynamics during fluidization[J]. Chemical Engineering Science, 2013, 100: 39-51. |
22 | Han M Q, Zhou Y, Zhu J. Improvement on flowability and fluidization of Group C particles after nanoparticle modification[J]. Powder Technology, 2020, 365: 208-214. |
23 | Peressadko A G, Hosoda N, Persson B N J. Influence of surface roughness on adhesion between elastic bodies[J]. Physical Review Letters, 2005, 95(12): 124301. |
24 | Zhao Z D, Liu D Y, Ma J L, et al. Fluidization of nanoparticle agglomerates assisted by combining vibration and stirring methods[J]. Chemical Engineering Journal, 2020, 388: 124213. |
25 | Zhu C, Liu G L, Yu Q, et al. Sound assisted fluidization of nanoparticle agglomerates[J]. Powder Technology, 2004, 141(1/2): 119-123. |
26 | Goldhirsch I. Rapid granular flows[J]. Annual Review of Fluid Mechanics, 2003, 35: 267-293. |
27 | Kasbaoui M H, Koch D L, Subramanian G, et al. Preferential concentration driven instability of sheared gas-solid suspensions[J]. Journal of Fluid Mechanics, 2015, 770: 85-123. |
28 | Cocco R, Shaffer F, Hays R, et al. Particle clusters in and above fluidized beds[J]. Powder Technology, 2010, 203(1): 3-11. |
29 | Tian Y J, Geng J W, Wang W. On the choice of mesoscale drag markers[J]. AIChE Journal, 2022, 68(4): e17558. |
30 | Jiang M, Zhang Y, Yu Y X, et al. A scale-independent modeling method for filtered drag in fluidized gas-particle flows[J]. Powder Technology, 2021, 394: 1050-1076. |
31 | Stroh A, Daikeler A, Nikku M, et al. Coarse grain 3D CFD-DEM simulation and validation with capacitance probe measurements in a circulating fluidized bed[J]. Chemical Engineering Science, 2019, 196: 37-53. |
32 | Yang Z, Lu B N, Wang W. Coupling artificial neural network with EMMS drag for simulation of dense fluidized beds[J]. Chemical Engineering Science, 2021, 246: 117003. |
33 | Lobel B T, Robertson H, Webber G B, et al. Impact of surface free energy on electrostatic extraction of particles from a bed[J]. Journal of Colloid and Interface Science, 2022, 611: 617-628. |
34 | Li X Q, Wang D F, Huang F L, et al. Stretching and rupture of a viscous liquid bridge between two spherical particles[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(1): e2579. |
35 | Royer J R, Evans D J, Oyarte L, et al. High-speed tracking of rupture and clustering in freely falling granular streams[J]. Nature, 2009, 459(7250): 1110-1113. |
36 | Matsusaka S, Maruyama H, Matsuyama T, et al. Triboelectric charging of powders: a review[J]. Chemical Engineering Science, 2010, 65(22): 5781-5807. |
37 | Pei C L, Wu C Y. DEM-CFD modelling of electrostatic phenomena in fluidization[C]//Proceedings of the 7th International Conference on Discrete Element Methods, 2017, 188: 995-1003. |
38 | Israelachvili J N. Intermolecular and Surface Forces[M]. London: Academic Press, 1992: 577-578. |
39 | Martin R. Introduction to particle technology[J]. Particle Acceleration in Astrophysical Plasmas Geospace & Beyond, 2008, 1: 27. |
40 | Tamim S I, Bostwick J B. Plateau–Rayleigh instability in a soft viscoelastic material[J]. Soft Matter, 2021, 17(15): 4170-4179. |
41 | Shi X D, Brenner M P, Nagel S R. A cascade of structure in a drop falling from a faucet[J]. Science, 1994, 265(5169): 219-222. |
42 | Lamarche C Q, Liu P, Kellogg K M, et al. Toward general regime maps for cohesive-particle flows: force versus energy-based descriptions and relevant dimensionless groups[J]. AIChE Journal, 2021, 67(9): e17337. |
43 | Castellanos A. The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders[J]. Advances in Physics, 2005, 54(4): 263-376. |
44 | Bahramian A. The mutual effects between the interparticle forces and mechanical properties on fluidization of TiO2 nanoparticle agglomerates in a conical fluidized bed: nanoindentation and pressure fluctuation analysis[J]. Journal of Nanoparticle Research, 2019, 21(9): 1-17. |
45 | Pan S Y, Ma J L, Liu D Y, et al. Distinguishing liquid transport patterns during the fluidization of wet particles with bed expansion behaviors[J]. Industrial & Engineering Chemistry Research, 2020, 59(44): 19600-19606. |
46 | Tausendschön J, Kolehmainen J, Sundaresan S, et al. Coarse graining Euler-Lagrange simulations of cohesive particle fluidization[J]. Powder Technology, 2020, 364: 167-182. |
47 | Lamarche C Q, Leadley S, Liu P, et al. Method of quantifying surface roughness for accurate adhesive force predictions[J]. Chemical Engineering Science, 2017, 158: 140-153. |
48 | 佟颖, Nouman Ahmad, 鲁波娜, 等. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692. |
Tong Y, Ahmad N, Lu B N, et al. Numerical investigation of bubbling fluidized bed with binary particle mixture using EMMS mesoscale drag model[J]. CIESC Journal, 2019, 70(5): 1682-1692. | |
49 | Gady B, Schleef D, Reifenberger R, et al. Identification of electrostatic and van der Waals interaction forces between a micrometer-size sphere and a flat substrate[J]. Physical Review. B, Condensed Matter, 1996, 53(12): 8065-8070. |
50 | Molerus O. Interpretation of Geldart's type A, B, C and D powders by taking into account interparticle cohesion forces[J]. Powder Technology, 1982, 33(1): 81-87. |
51 | Fullmer W D, Hrenya C M. The clustering instability in rapid granular and gas-solid flows[J]. Annual Review of Fluid Mechanics, 2017, 49: 485-510. |
52 | Hrenya C M, Sinclair J L. Effects of particle-phase turbulence in gas-solid flows[J]. AIChE Journal, 1997, 43(4): 853-869. |
53 | Bisgaard J, Muldbak M, Cornelissen S, et al. Flow-following sensor devices: a tool for bridging data and model predictions in large-scale fermentations[J]. Computational and Structural Biotechnology Journal, 2020, 18: 2908-2919. |
54 | 马吉亮, 刘道银, 梁财, 等. 黏性Geldart B类颗粒流化特性实验研究[J]. 工程热物理学报, 2017, 38(8): 1702-1706. |
Ma J L, Liu D Y, Liang C, et al. Experimental study on the fluidization dynamics of cohesive Geldart B particles[J]. Journal of Engineering Thermophysics, 2017, 38(8): 1702-1706. | |
55 | 殷上轶, 钟文琪, 卢平, 等. 基于图像处理的循环流化床团聚物体积分数及其容积份额[J]. 燃烧科学与技术, 2018, 24(6): 506-512. |
Yin S Y, Zhong W Q, Lu P, et al. Cluster density and fraction in a circulating fluidized bed based on image processing[J]. Journal of Combustion Science and Technology, 2018, 24(6): 506-512. | |
56 | Liu Y, Dai Q T, Qi H Y. Cluster identification criterion with experimental validation for the cluster solid holdup model during fluidization[J]. Powder Technology, 2020, 373: 459-467. |
57 | Cai P, Jin Y, Yu Z Q, et al. Mechanism of flow regime transition from bubbling to turbulent fluidization[J]. AIChE Journal, 1990, 36(6): 955-956. |
58 | Chew J W, Hays R, Findlay J G, et al. Cluster characteristics of Geldart Group B particles in a pilot-scale CFB riser ( Ⅰ ) : Monodisperse systems[J]. Chemical Engineering Science, 2012, 68(1): 72-81. |
59 | Yang J S, Zhu J. A novel method based on image processing to visualize clusters in a rectangular circulating fluidized bed riser[J]. Powder Technology, 2014, 254: 407-415. |
60 | Mondal D N, Kallio S, Saxén H. Length scales of solid clusters in a two-dimensional circulating fluidized bed of Geldart B particles[J]. Powder Technology, 2015, 269: 207-218. |
61 | Mondal D N, Kallio S, Saxén H, et al. Experimental study of cluster properties in a two-dimensional fluidized bed of Geldart B particles[J]. Powder Technology, 2016, 291: 420-436. |
62 | Wang H F, Chen Y P, Wang W. Particle-level dynamics of clusters: experiments in a gas-fluidized bed[J]. AIChE Journal, 2022, 68(3): e17525. |
63 | Lu L Q, Liu X W, Li T W, et al. Assessing the capability of continuum and discrete particle methods to simulate gas-solids flow using DNS predictions as a benchmark[J]. Powder Technology, 2017, 321: 301-309. |
64 | Liu P Y, Hrenya C M. Cluster-induced deagglomeration in dilute gravity-driven gas-solid flows of cohesive grains[J]. Physical Review Letters, 2012, 121(23): 238001. |
65 | Li D, Wang S Y, Liu G D, et al. A dynamic cluster structure-dependent drag coefficient model applied to gas-solid risers[J]. Powder Technology, 2018, 325: 381-395. |
66 | Jiang X X, Wang S Y, Li Z G, et al. Pulsation active method-based particle cluster regulation using dynamic cluster structure-dependent drag model in a fluidized bed riser[J]. Chemical Engineering Science, 2022, 249: 117370. |
67 | Li J, Zhou L, Li P C, et al. Enhanced fluidized bed methanation over a Ni/Al2O3 catalyst for production of synthetic natural gas[J]. Chemical Engineering Journal, 2013, 219: 183-189. |
68 | Raganati F, Gargiulo V, Ammendola P, et al. CO2 capture performance of HKUST-1 in a sound assisted fluidized bed[J]. Chemical Engineering Journal, 2014, 239: 75-86. |
69 | Maghsoodi S, Khodadadi A, Mortazavi Y. A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor[J]. Applied Surface Science, 2010, 256(9): 2769-2774. |
70 | Wang X S, Rahman F, Rhodes M J. Nanoparticle fluidization and Geldart's classification[J]. Chemical Engineering Science, 2007, 62(13): 3455-3461. |
71 | Li Y M, Somorjai G A. Nanoscale advances in catalysis and energy applications[J]. Nano Letters, 2010, 10(7): 2289-2295. |
72 | Bell A T. The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299(5613): 1688-1691. |
73 | Hamaker H C. The London—van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072. |
74 | Johnson K L, Greenwood J A. An adhesion map for the contact of elastic spheres[J]. Journal of Colloid and Interface Science, 1997, 192(2): 326-333. |
75 | Johnson K L, Kendall K, Roberts A D. Surface energy and contact of elastic solids[J]. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 1971, 324(1558): 301-313. |
76 | Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformations on the adhesion of particles[J]. Journal of Colloid and Interface Science, 1975, 53(2): 314-326. |
77 | Schaefer D M, Carpenter M, Gady B, et al. Surface roughness and its influence on particle adhesion using atomic force techniques[J]. Journal of Adhesion Science and Technology, 1995, 9(8): 1049-1062. |
78 | Cai S C, Shen Y X, Io C W. The mesoscopic collective motion of self-propelling active particle suspension confined in two-dimensional micro-channel[J]. Journal of Physics. Condensed Matter: an Institute of Physics Journal, 2020, 32(9): 095101. |
79 | Liu P Y, LaMarche C Q, Kellogg K M, et al. Cohesive grains: bridging microlevel measurements to macrolevel flow behavior via surface roughness[J]. AIChE Journal, 2016, 62(10): 3529-3537. |
80 | Butt H J, Kappl M. Surface and Interfacial Forces [M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. |
81 | Chaouki J, Chavarie C, Klvana D, et al. Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels[J]. Powder Technology, 1985, 43(2): 117-125. |
82 | Zhou T, Li H Z. Force balance modelling for agglomerating fluidization of cohesive particles[J]. Powder Technology, 2000, 111(1/2): 60-65. |
83 | Tamadondar M R, Zarghami R, Boutou K, et al. Size of nanoparticle agglomerates in fluidization[J]. The Canadian Journal of Chemical Engineering, 2016, 94(3): 476-484. |
[1] | Kaiyue WANG, Yongli MA, Chen LI, Mingyan LIU. Gas-liquid mass transfer coefficients in the gas-liquid-solid micro-fluidized beds [J]. CIESC Journal, 2022, 73(8): 3529-3540. |
[2] | Tianqi TANG, Yurong HE. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed [J]. CIESC Journal, 2022, 73(6): 2636-2648. |
[3] | Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds [J]. CIESC Journal, 2022, 73(6): 2468-2485. |
[4] | Tienan LI, Bidan ZHAO, Peng ZHAO, Yongmin ZHANG, Junwu WANG. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed [J]. CIESC Journal, 2022, 73(6): 2649-2661. |
[5] | Chenyang ZHOU, Ying JIA, Yuemin ZHAO, Yong ZHANG, Zhijie FU, Yuqing FENG, Chenlong DUAN. Intensification of dry dense medium fluidization separation process from a mesoscale perspective [J]. CIESC Journal, 2022, 73(6): 2452-2467. |
[6] | Shanwei HU, Xinhua LIU. Multiscale trans-regime EMMS modeling of gas-solid fluidization systems [J]. CIESC Journal, 2022, 73(6): 2514-2528. |
[7] | Cong HE, Wenqi ZHONG, Guanwen ZHOU, Xi CHEN. Study on decomposition characteristics of cement raw meal in suspension furnace at high altitude [J]. CIESC Journal, 2022, 73(5): 2120-2129. |
[8] | Nan ZHOU, Zan WANG, Yingjuan SHAO, Wenqi ZHONG. Experimental study on attrition characteristics of coal tar pitch particles during gas-solid fluidization [J]. CIESC Journal, 2022, 73(2): 587-594. |
[9] | Yongli MA, Mingyan LIU, Chen LI, Zongding HU. Research progress of liquid-solid and gas-liquid-solid mini- or micro-fluidizations [J]. CIESC Journal, 2022, 73(1): 46-58. |
[10] | Haifeng LU, Jiakun CAO, Xiaolei GUO, Haifeng LIU. Study on fine powders discharged from hopper based on interparticle interactions analysis [J]. CIESC Journal, 2021, 72(8): 4047-4054. |
[11] | ZHANG Xi,ZHANG Lilong,LI Rui,WU Yulong. Life cycle assessment of straw fast pyrolysis based on energy integration [J]. CIESC Journal, 2021, 72(5): 2792-2800. |
[12] | Zhuang WANG, Xiao LYU, Yuanyuan SHAO, Jesse ZHU. Early exploration of fluidization theory and its inspiration to the future [J]. CIESC Journal, 2021, 72(12): 5904-5927. |
[13] | SUN Cong,YAN Bowei,CAI Changyong,HAN Zhennan,XU Guangwen. Characteristics of reaction and product microstructure during light calcination of magnesite in transport bed [J]. CIESC Journal, 2020, 71(12): 5735-5744. |
[14] | Wangyu MA, Zhenghong LUO. Bed expansion and fluidized states change of Geldart-B particle gas-solid fluidized bed [J]. CIESC Journal, 2019, 70(7): 2472-2479. |
[15] | Yi ZHANG, Yulong BAI, Dingling LUO, Jianzhou LU, Yanjun GUAN, Kai ZHANG. Effect of drag models on CFD simulations for homogeneous liquid-solid fluidization [J]. CIESC Journal, 2019, 70(11): 4207-4215. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 818
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 617
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||