CIESC Journal ›› 2023, Vol. 74 ›› Issue (1): 416-427.DOI: 10.11949/0438-1157.20221014
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Lin SHENG(), Yu CHANG, Jian DENG, Guangsheng LUO()
Received:
2022-07-20
Revised:
2022-09-01
Online:
2023-03-20
Published:
2023-01-05
Contact:
Guangsheng LUO
通讯作者:
骆广生
作者简介:
盛林(1997—),男,博士研究生,shengl19@mails.tsinghua.edu.cn
基金资助:
CLC Number:
Lin SHENG, Yu CHANG, Jian DENG, Guangsheng LUO. Formation and flow characteristics of ordered bubble swarm in a step T-junction microchannel[J]. CIESC Journal, 2023, 74(1): 416-427.
盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427.
Add to citation manager EndNote|Ris|BibTeX
甘油质量 分数/% | 密度ρ/(kg·m-3) | 黏度μ/(mPa·s) | 界面张力σ/(mN·m-1) |
---|---|---|---|
80 | 1206 | 45.6 | 46.12 |
86 | 1223 | 89.8 | 47.88 |
90 | 1232 | 151.9 | 49.66 |
93 | 1237 | 240.5 | 50.89 |
Table 1 Physical properties of the gas-liquid system (25℃)
甘油质量 分数/% | 密度ρ/(kg·m-3) | 黏度μ/(mPa·s) | 界面张力σ/(mN·m-1) |
---|---|---|---|
80 | 1206 | 45.6 | 46.12 |
86 | 1223 | 89.8 | 47.88 |
90 | 1232 | 151.9 | 49.66 |
93 | 1237 | 240.5 | 50.89 |
Fig.9 Variation of the velocity of bubble swarm crystal and total volumetric flow rate of gas-liquid two-phase with volumetric flow rate of liquid phase
8 | Wang K, Luo G S. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33. |
9 | Jeong H H, Chen Z, Yadavali S, et al. Large-scale production of compound bubbles using parallelized microfluidics for efficient extraction of metal ions[J]. Lab on a Chip, 2019, 19(6): 1101-1102. |
10 | Zheng C, Zhao B C, Wang K, et al. Determination of kinetics of CO2 absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique[J]. AIChE Journal, 2015, 61(12): 4358-4366. |
11 | Pang Z F, Jiang S K, Zhu C Y, et al. Mass transfer of chemical absorption of CO2 in a serpentine minichannel[J]. Chemical Engineering Journal, 2021, 414: 128791. |
12 | Niu H N, Pan L W, Su H J, et al. Flow pattern, pressure drop, and mass transfer in a gas-liquid concurrent two-phase flow microchannel reactor[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1621-1628. |
13 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
14 | Zhang C, Fu T T, Zhu C Y, et al. Dynamics of bubble formation in highly viscous liquids in a flow-focusing device[J]. Chemical Engineering Science, 2017, 172: 278-285. |
15 | Wang K, Xie L S, Lu Y C, et al. Generating microbubbles in a co-flowing microfluidic device[J]. Chemical Engineering Science, 2013, 100: 486-495. |
16 | 崔永晋, 李严凯, 王凯, 等. 微分散设备数量放大方式研究进展[J]. 化工学报, 2020, 71(10): 4350-4364. |
Cui Y J, Li Y K, Wang K, et al. Recent advances of numbering-up technology of micro-dispersion devices[J]. CIESC Journal, 2020, 71(10): 4350-4364. | |
17 | Chung P M Y, Kawaji M. The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels[J]. International Journal of Multiphase Flow, 2004, 30(7/8): 735-761. |
18 | Choi C W, Yu D I, Kim M H. Adiabatic two-phase flow in rectangular microchannels with different aspect ratios (part Ⅱ): Bubble behaviors and pressure drop in single bubble[J]. International Journal of Heat and Mass Transfer, 2010, 53(23/24): 5242-5249. |
19 | Tan J, Li S W, Wang K, et al. Gas-liquid flow in T-junction microfluidic devices with a new perpendicular rupturing flow route[J]. Chemical Engineering Journal, 2009, 146(3): 428-433. |
20 | Sheng L, Chen Y C, Deng J, et al. High-frequency formation of bubble with short length in a capillary embedded step T-junction microdevice[J]. AIChE Journal, 2021, 67(11): e17376. |
21 | Mi S, Weldetsadik N T, Hayat Z, et al. Effects of the gas feed on bubble formation in a microfluidic T-junction: constant-pressure versus constant-flow-rate injection[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 10092-10105. |
22 | Wang H, Jiang S K, Zhu C Y, et al. Bubble formation in T-junctions within parallelized microchannels: effect of viscoelasticity[J]. Chemical Engineering Journal, 2021, 426: 131783. |
23 | 陈宇超, 崔永晋, 王凯, 等. 阶梯式T型微通道内液滴、气泡分散规律[J]. 化工学报, 2020, 71(1): 265-273. |
Chen Y C, Cui Y J, Wang K, et al. Droplet and bubble dispersion instep T-junction microchannel[J]. CIESC Journal, 2020, 71(1): 265-273. | |
24 | Pasha M, Liu S E, Zhang J, et al. Recent advancements on hydrodynamics and mass transfer characteristics for CO2 absorption in microreactors[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12249-12268. |
25 | Guo R W, Fu T T, Zhu C Y, et al. Hydrodynamics and mass transfer of gas-liquid flow in a tree-shaped parallel microchannel with T-type bifurcations[J]. Chemical Engineering Journal, 2019, 373: 1203-1211. |
26 | Fukano T, Kariyasaki A. Characteristics of gas-liquid two-phase flow in a capillary tube[J]. Nuclear Engineering and Design, 1993, 141(1/2): 59-68. |
27 | Mishima K, Hibiki T. Some characteristics of air-water two-phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22(4): 703-712. |
28 | Liu H, Vandu C O, Krishna R. Hydrodynamics of Taylor flow in vertical capillaries: flow regimes, bubble rise velocity, liquid slug length, and pressure drop[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 4884-4897. |
29 | Kawahara A, Sadatomi M, Nei K, et al. Experimental study on bubble velocity, void fraction and pressure drop for gas-liquid two-phase flow in a circular microchannel[J]. International Journal of Heat and Fluid Flow, 2009, 30(5): 831-841. |
1 | Wang K, Li L T, Xie P, et al. Liquid-liquid microflow reaction engineering[J]. Reaction Chemistry & Engineering, 2017, 2(5): 611-627. |
2 | Song J, Cui Y J, Sheng L, et al. Determination of nitration kinetics of p-nitrotoluene with a homogeneously continuous microflow[J]. Chemical Engineering Science, 2022, 247: 117041. |
3 | Xie P, Wang K, Deng J, et al. Continuous, homogeneous and rapid synthesis of 4-bromo-3-methylanisole in a modular microreaction system[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2092-2098. |
4 | Yan Z F, Tian J X, Du C C, et al. Reaction kinetics determination based on microfluidic technology[J]. Chinese Journal of Chemical Engineering, 2022, 41: 49-72. |
5 | Du L, Wang Y J, Wang K, et al. Growth of aragonite CaCO3 whiskers in a microreactor with calcium dodecyl benzenesulfonate as a control agent[J]. Industrial & Engineering Chemistry Research, 2015, 54(28): 7131-7140. |
6 | Han C L, Hu Y P, Wang K, et al. Preparation and in situ surface modification of CaCO3 nanoparticles with calcium stearate in a microreaction system[J]. Powder Technology, 2019, 356: 414-422. |
7 | 李严凯, 王凯, 骆广生. 液液微分散及其用于标准颗粒制备的研究进展[J]. 化工进展, 2019, 38(1): 30-44. |
Li Y K, Wang K, Luo G S. Advances in liquid-liquid micro-dispersion and its applications in standard particle preparation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 30-44. | |
30 | Kawahara A, Sadatomi M, Nei K, et al. Characteristics of two-phase flows in a rectangular microchannel with a T-junction type gas-liquid mixer[J]. Heat Transfer Engineering, 2011, 32(7/8): 585-594. |
31 | Sheng L, Chen Y C, Wang K, et al. General rules of bubble formation in viscous liquids in a modified step T-junction microdevice[J]. Chemical Engineering Science, 2021, 239: 116621. |
32 | Li Y K, Wang K, Xu J H, et al. A capillary-assembled micro-device for monodispersed small bubble and droplet generation[J]. Chemical Engineering Journal, 2016, 293: 182-188. |
33 | Garstecki P, Whitesides G M. Flowing crystals: nonequilibrium structure of foam[J]. Physical Review Letters, 2006, 97(2): 024503. |
34 | Raven J P, Marmottant P. Microfluidic crystals: dynamic interplay between rearrangement waves and flow[J]. Physical Review Letters, 2009, 102(8): 084501. |
35 | del Giudice F, D’Avino G, Maffettone P L. Microfluidic formation of crystal-like structures[J]. Lab on a Chip, 2021, 21(11): 2069-2094. |
36 | Sheng L, Chen Y C, Deng J, et al. Ideality analysis and general laws of bubble swarm microflow for large-scale gas-liquid microreaction processes[J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 56-65. |
37 | van Steijn V, Kreutzer M T, Kleijn C R. Μ-PIV study of the formation of segmented flow in microfluidic T-junctions[J]. Chemical Engineering Science, 2007, 62(24): 7505-7514. |
38 | Sheng L, Chang Y, Deng J, et al. Hydrodynamics and scaling laws of gas-liquid Taylor flow in viscous liquids in a microchannel[J]. Industrial & Engineering Chemistry Research, 2022, 61(28): 10275-10284. |
39 | Hatch A C, Fisher J S, Pentoney S L, et al. Tunable 3D droplet self-assembly for ultra-high-density digital micro-reactor arrays[J]. Lab on a Chip, 2011, 11(15): 2509-2517. |
40 | Elvira K S, Solvas X C i, Wootton R C R, et al. The past, present and potential for microfluidic reactor technology in chemical synthesis[J]. Nature Chemistry, 2013, 5(11): 905-915. |
[1] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[4] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[5] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[6] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[7] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[8] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[9] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[10] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[11] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[12] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[13] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[14] | Xuanzhi HE, Yongqing HE, Guiye WEN, Feng JIAO. Ferrofluid droplet neck self-similar breakup behavior [J]. CIESC Journal, 2023, 74(7): 2889-2897. |
[15] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||