CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4164-4172.DOI: 10.11949/0438-1157.20230362
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Shanbin GAO(), Mengchen LI, Hongyue YU, Yuge SHEN, Liang QIAO, Kebin CHI, Dejun SHI
Received:
2023-04-10
Revised:
2023-07-18
Online:
2023-12-22
Published:
2023-10-25
Contact:
Shanbin GAO
高善彬(), 李梦晨, 于宏悦, 沈雨歌, 乔亮, 迟克彬, 史得军
通讯作者:
高善彬
作者简介:
高善彬(1982—),男,博士,高级工程师,gsb459@petrochina.com.cn
基金资助:
CLC Number:
Shanbin GAO, Mengchen LI, Hongyue YU, Yuge SHEN, Liang QIAO, Kebin CHI, Dejun SHI. In-situ acid regulation and hydroisomerization performance of Pt/ZSM-22 catalyst[J]. CIESC Journal, 2023, 74(10): 4164-4172.
高善彬, 李梦晨, 于宏悦, 沈雨歌, 乔亮, 迟克彬, 史得军. Pt/ZSM-22催化剂酸性原位调控及加氢异构性能[J]. 化工学报, 2023, 74(10): 4164-4172.
Add to citation manager EndNote|Ris|BibTeX
温度/℃ | Pt/H-ZSM-22/(mmol/g) | Pt/N-ZSM-22/(mmol/g) | Pt/R380-ZSM-22/(mmol/g) | Pt/R390-ZSM-22/(mmol/g) |
---|---|---|---|---|
200 | 0.534 | 0.415 | 0.446 | 0.493 |
350 | 0.370 | 0.257 | 0.289 | 0.328 |
Table 1 Py-IR results of Pt/H-ZSM-22, Pt/N-ZSM-22 and Pt/R-ZSM-22 catalysts
温度/℃ | Pt/H-ZSM-22/(mmol/g) | Pt/N-ZSM-22/(mmol/g) | Pt/R380-ZSM-22/(mmol/g) | Pt/R390-ZSM-22/(mmol/g) |
---|---|---|---|---|
200 | 0.534 | 0.415 | 0.446 | 0.493 |
350 | 0.370 | 0.257 | 0.289 | 0.328 |
参数 | 数值 |
---|---|
S/(μg/g) | 1.71 |
N/(μg/g) | <1.1 |
凝点/℃ | 32.9 |
100℃运动黏度/(mm2/s) | 4.865 |
黏度指数 | 130 |
闪点/℃ | 212 |
密度(20℃)/(g/cm3) | 0.841 |
馏程/℃ | |
HK/5%/10%/30% 50%/70%/90%/95%/ KK | 315/374/386/407 426/453/495/511/534 |
组成/%(质量) | |
饱和烃 | 96.61 |
芳烃 | 3.02 |
极性化合物 | 0.37 |
Table 2 Properties of hydrocracking UCO
参数 | 数值 |
---|---|
S/(μg/g) | 1.71 |
N/(μg/g) | <1.1 |
凝点/℃ | 32.9 |
100℃运动黏度/(mm2/s) | 4.865 |
黏度指数 | 130 |
闪点/℃ | 212 |
密度(20℃)/(g/cm3) | 0.841 |
馏程/℃ | |
HK/5%/10%/30% 50%/70%/90%/95%/ KK | 315/374/386/407 426/453/495/511/534 |
组成/%(质量) | |
饱和烃 | 96.61 |
芳烃 | 3.02 |
极性化合物 | 0.37 |
参数 | Pt/H-ZSM-22 | Pt/N-ZSM-22 |
---|---|---|
异构反应温度/℃ | 340 | 360 |
全馏分凝点/℃ | -34 | -33 |
总基础油收率(>280℃),ω/% | 85.18 | 88.31 |
重质基础油收率(>400℃),ω/% | 61.09 | 69.48 |
100℃运动黏度/(mm2/s) | 5.832 | 5.754 |
黏度指数 | 123 | 125 |
倾点/℃ | -18 | -18 |
浊点/℃ | -9 | -8 |
饱和烃/%(质量) | 99 | 99 |
Table 3 Hydroisomerization results of Pt/H-ZSM-22 and Pt/N-ZSM-22 catalysts
参数 | Pt/H-ZSM-22 | Pt/N-ZSM-22 |
---|---|---|
异构反应温度/℃ | 340 | 360 |
全馏分凝点/℃ | -34 | -33 |
总基础油收率(>280℃),ω/% | 85.18 | 88.31 |
重质基础油收率(>400℃),ω/% | 61.09 | 69.48 |
100℃运动黏度/(mm2/s) | 5.832 | 5.754 |
黏度指数 | 123 | 125 |
倾点/℃ | -18 | -18 |
浊点/℃ | -9 | -8 |
饱和烃/%(质量) | 99 | 99 |
1 | Tan Y C, Hu W J, Du Y Y, et al. Species and impacts of metal sites over bifunctional catalyst on long chain n-alkane hydroisomerization: a review[J]. Applied Catalysis A: General, 2021, 611: 117916. |
2 | Kim J, Han S W, Kim J C, et al. Supporting nickel to replace platinum on zeolite nanosponges for catalytic hydroisomerization of n-dodecane[J]. ACS Catalysis, 2018, 8(11): 10545-10554. |
3 | del Campo P, MartÃnez C, Corma A. Activation and conversion of alkanes in the confined space of zeolite-type materials[J]. Chemical Society Reviews, 2021, 50(15): 8511-8595. |
4 | Wang D X, Kang X, Gu Y, et al. Electronic tuning of Ni by Mo species for highly efficient hydroisomerization of n-alkanes comparable to Pt-based catalysts[J]. ACS Catalysis, 2020, 10(18): 10449-10458. |
5 | Wang W, Liu C J, Wu W. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure[J]. Catalysis Science & Technology, 2019, 9(16): 4162-4187. |
6 | Weston S C, Peterson B K, Gatt J E, et al. EMM-17, a new three-dimensional zeolite with unique 11-ring channels and superior catalytic isomerization performance[J]. Journal of the American Chemical Society, 2019, 141(40): 15910-15920. |
7 | Deldari H. Suitable catalysts for hydroisomerization of long-chain normal paraffins[J]. Applied Catalysis A: General, 2005, 293: 1-10. |
8 | Gerasimov D N, Fadeev V V, Loginova A N, et al. Catalysts based on zeolite ZSM-23 for isodewaxing of a lubricant stock[J]. Catalysis in Industry, 2013, 5(2): 123-132. |
9 | Liu P, Zhang X G, Yao Y, et al. Pt catalysts supported on β zeolite ion-exchanged with Cr(Ⅲ) for hydroisomerization of n-heptane[J]. Applied Catalysis A: General, 2009, 371(1/2): 142-147. |
10 | Liu Y Y, Murata K, Sakanishi K. Hydroisomerization-cracking of gasoline distillate from Fischer-Tropsch synthesis over bifunctional catalysts containing Pt and heteropolyacids[J]. Fuel, 2011, 90(10): 3056-3065. |
11 | Buluchevskii E A, Fedorova E D, Lavrenov A V, et al. Hydroisomerization of benzene-containing gasoline fraction on Pt/B2O3-Al2O3 and Pt/WO3-Al2O3 catalysts[J]. Catalysis in Industry, 2018, 10(2): 118-125. |
12 | Rüfer A, Reschetilowski W. Application of design of experiments in heterogeneous catalysis: using the isomerization of n-decane for a parameter screening[J]. Chemical Engineering Science, 2012, 75: 364-375. |
13 | Park K C, Ihm S K. Comparison of Pt/zeolite catalysts for n-hexadecane hydroisomerization[J]. Applied Catalysis A: General, 2000, 203(2): 201-209. |
14 | Zhang M, Chen Y J, Wang L, et al. Shape selectivity in hydroisomerization of hexadecane over Pt supported on 10-ring zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48[J]. Industrial & Engineering Chemistry Research, 2016, 55(21): 6069-6078. |
15 | Wang G, Liu Q J, Su W G, et al. Hydroisomerization activity and selectivity of n-dodecane over modified Pt/ZSM-22 catalysts[J]. Applied Catalysis A: General, 2008, 335(1): 20-27. |
16 | Chen Y J, Li C, Chen X, et al. Synthesis and characterization of iron-substituted ZSM-23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane[J]. Industrial & Engineering Chemistry Research, 2018, 57(41): 13721-13730. |
17 | 高善彬, 迟克彬, 杨晓东, 等. 正构烷烃在Pt/SAPO-11催化剂上加氢异构反应性能[J]. 化工学报, 2016, 67(12): 5024-5030。 |
Gao S B, Chi K B, Yang X D, et al. Performance of n-alkane isomerization over Pt/SAPO-11 catalyst[J]. CIESC Journal, 2016, 67(12): 5024-5030. | |
18 | Saxena S K, Kamble R, Singh M, et al. Effect of acid treatments on physico-chemical properties and isomerization activity of mordenite[J]. Catalysis Today, 2009, 141(1/2): 215-219. |
19 | Chen Z Q, Liu S Y, Wang H H, et al. Synthesis and characterization of bundle-shaped ZSM-22 zeolite via the oriented fusion of nanorods and its enhanced isomerization performance[J]. Journal of Catalysis, 2018, 361: 177-185. |
20 | Parmar S, Pant K K, John M, et al. Hydroisomerization of n-hexadecane over Pt/ZSM-22 framework: effect of divalent cation exchange[J]. Journal of Molecular Catalysis A: Chemical, 2015, 404/405: 47-56. |
21 | Ernest W, Valyocsik Y. Synthesis of zeolite ZSM-22 with a heterocyclic organic compound: US 4481177[P].1984. |
22 | Zhang L, Fu W Q, He L W, et al. Design and synthesis of Pt catalyst supported on ZSM-22 nanocrystals with increased accessible 10-MR pore mouths and acidic sites for long-chain n-alkane hydroisomerization[J]. Microporous and Mesoporous Materials, 2021, 313: 110834. |
23 | Mäki-Arvela P, Murzin D Y. Effect of metal particle shape on hydrogen assisted reactions[J]. Applied Catalysis A: General, 2021, 618: 118140. |
24 | Regali F, Liotta L F, Venezia A M, et al. Hydroconversion of n-hexadecane on Pt/silica-alumina catalysts: effect of metal loading and support acidity on bifunctional and hydrogenolytic activity[J]. Applied Catalysis A: General, 2014, 469: 328-339. |
25 | Hu Y F, Wang X S, Guo X W, et al. Effects of channel structure and acidity of molecular sieves in hydroisomerization of n-octane over bi-functional catalysts[J]. Catalysis Letters, 2005, 100(1): 59-65. |
26 | Rey J, Raybaud P, Chizallet C, et al. Competition of secondary versus tertiary carbenium routes for the type B isomerization of alkenes over acid zeolites quantified by ab initio molecular dynamics simulations[J]. ACS Catalysis, 2019, 9(11): 9813-9828. |
27 | Weitkamp J, Jacobs P A, Martens J A. Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HZSM-5 zeolite[J]. Applied Catalysis, 1983, 8(1): 123-141. |
28 | Viswanadham N, Dixit L, Gupta J K, et al. Effect of acidity and porosity changes of dealuminated mordenites on n-hexane isomerization[J]. Journal of Molecular Catalysis A: Chemical, 2006, 258(1/2): 15-21. |
29 | Martín A J, Mitchell S, Mondelli C, et al. Unifying views on catalyst deactivation[J]. Nature Catalysis, 2022, 5(10): 854-866. |
30 | Miller S J, Lacheen H S, Chen C Y. Determining the strength of Brønsted acid sites for hydrodewaxing over shape-selective catalysts[J]. Industrial & Engineering Chemistry Research, 2016, 55(24): 6760-6767. |
31 | Elangovan S P, Hartmann M. Evaluation of Pt/MCM-41// MgAPO-n composite catalysts for isomerization and hydrocracking of n-decane[J]. Journal of Catalysis, 2003, 217(2): 388-395. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[10] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[13] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[14] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[15] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||