CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4634-4644.DOI: 10.11949/0438-1157.20230841
• Process system engineering • Previous Articles Next Articles
Mengyuan LI1(), Yi CUI1, Yufei WANG1, Lu YANG2, Haidong LI2, Qiqi ZHANG2, Chenglin CHANG2,3()
Received:
2023-08-16
Revised:
2023-11-03
Online:
2024-01-22
Published:
2023-11-25
Contact:
Chenglin CHANG
李孟原1(), 崔祎1, 王彧斐1, 杨路2, 李海东2, 张奇琪2, 常承林2,3()
通讯作者:
常承林
作者简介:
李孟原(1998—),男,硕士研究生,limengyuan1212@qq.com
基金资助:
CLC Number:
Mengyuan LI, Yi CUI, Yufei WANG, Lu YANG, Haidong LI, Qiqi ZHANG, Chenglin CHANG. Optimization of multi-plant and multi-period heat exchanger network with flexible topology configuration[J]. CIESC Journal, 2023, 74(11): 4634-4644.
李孟原, 崔祎, 王彧斐, 杨路, 李海东, 张奇琪, 常承林. 具有柔性拓扑结构的厂际多周期换热网络优化[J]. 化工学报, 2023, 74(11): 4634-4644.
Add to citation manager EndNote|Ris|BibTeX
物流 | 周期 | ti/℃ | to/℃ | h/(kW·m-2·℃-1) | F/(kW·℃-1) | ρ/(kg·m-3) | cp /(kJ·kg-1·℃-1) |
---|---|---|---|---|---|---|---|
H1(P1) | 1 | 250 | 60 | 1.1 | 20 | 10 | 612 |
2 | 280 | 60 | 1.0 | 30 | 10 | 612 | |
3 | 300 | 100 | 1.2 | 25 | 10 | 612 | |
H2(P1) | 1 | 500 | 200 | 1.5 | 25 | 10 | 850 |
2 | 450 | 200 | 1.6 | 40 | 10 | 850 | |
3 | 480 | 200 | 1.5 | 30 | 10 | 850 | |
H3(P2) | 1 | 70 | 60 | 1.5 | 250 | 1000 | 820 |
2 | 90 | 80 | 1.5 | 220 | 1000 | 820 | |
3 | 80 | 70 | 1.5 | 230 | 1000 | 820 | |
H4(P2) | 1 | 120 | 100 | 1.3 | 150 | 500 | 520 |
2 | 130 | 110 | 1.4 | 130 | 500 | 520 | |
3 | 140 | 120 | 1.5 | 160 | 500 | 520 | |
H5(P3) | 1 | 150 | 140 | 1.2 | 300 | 1500 | 650 |
2 | 170 | 160 | 1.3 | 320 | 1500 | 650 | |
3 | 180 | 170 | 1.4 | 310 | 1500 | 650 | |
H6(P3) | 1 | 140 | 120 | 1.6 | 50 | 600 | 800 |
2 | 120 | 100 | 1.6 | 50 | 600 | 800 | |
3 | 130 | 110 | 1.6 | 50 | 600 | 800 | |
C1(P1) | 1 | 130 | 140 | 1.2 | 300 | 1000 | 700 |
2 | 120 | 130 | 1.0 | 350 | 1000 | 700 | |
3 | 110 | 120 | 1.3 | 320 | 1000 | 700 | |
C2(P1) | 1 | 200 | 210 | 1.6 | 250 | 500 | 720 |
2 | 230 | 240 | 1.5 | 230 | 500 | 720 | |
3 | 220 | 230 | 1.4 | 240 | 500 | 720 | |
C3(P2) | 1 | 35 | 100 | 1.7 | 25 | 10 | 600 |
2 | 25 | 120 | 1.8 | 22 | 10 | 600 | |
3 | 45 | 150 | 1.8 | 23 | 10 | 600 | |
C4(P2) | 1 | 110 | 160 | 1.2 | 25 | 10 | 700 |
2 | 100 | 150 | 1.3 | 22 | 10 | 700 | |
3 | 120 | 160 | 1.4 | 23 | 10 | 700 | |
C5(P3) | 1 | 75 | 130 | 1.5 | 30 | 15 | 650 |
2 | 65 | 120 | 1.6 | 30 | 15 | 650 | |
3 | 55 | 110 | 1.5 | 30 | 15 | 650 | |
C6(P3) | 1 | 180 | 190 | 1.4 | 200 | 1000 | 700 |
2 | 200 | 210 | 1.5 | 200 | 1000 | 700 | |
3 | 230 | 240 | 1.6 | 200 | 1000 | 700 | |
Hu | 280 | 279 | 1.8 | ||||
Cu | 15 | 20 | 1.0 |
Table 1 The stream data
物流 | 周期 | ti/℃ | to/℃ | h/(kW·m-2·℃-1) | F/(kW·℃-1) | ρ/(kg·m-3) | cp /(kJ·kg-1·℃-1) |
---|---|---|---|---|---|---|---|
H1(P1) | 1 | 250 | 60 | 1.1 | 20 | 10 | 612 |
2 | 280 | 60 | 1.0 | 30 | 10 | 612 | |
3 | 300 | 100 | 1.2 | 25 | 10 | 612 | |
H2(P1) | 1 | 500 | 200 | 1.5 | 25 | 10 | 850 |
2 | 450 | 200 | 1.6 | 40 | 10 | 850 | |
3 | 480 | 200 | 1.5 | 30 | 10 | 850 | |
H3(P2) | 1 | 70 | 60 | 1.5 | 250 | 1000 | 820 |
2 | 90 | 80 | 1.5 | 220 | 1000 | 820 | |
3 | 80 | 70 | 1.5 | 230 | 1000 | 820 | |
H4(P2) | 1 | 120 | 100 | 1.3 | 150 | 500 | 520 |
2 | 130 | 110 | 1.4 | 130 | 500 | 520 | |
3 | 140 | 120 | 1.5 | 160 | 500 | 520 | |
H5(P3) | 1 | 150 | 140 | 1.2 | 300 | 1500 | 650 |
2 | 170 | 160 | 1.3 | 320 | 1500 | 650 | |
3 | 180 | 170 | 1.4 | 310 | 1500 | 650 | |
H6(P3) | 1 | 140 | 120 | 1.6 | 50 | 600 | 800 |
2 | 120 | 100 | 1.6 | 50 | 600 | 800 | |
3 | 130 | 110 | 1.6 | 50 | 600 | 800 | |
C1(P1) | 1 | 130 | 140 | 1.2 | 300 | 1000 | 700 |
2 | 120 | 130 | 1.0 | 350 | 1000 | 700 | |
3 | 110 | 120 | 1.3 | 320 | 1000 | 700 | |
C2(P1) | 1 | 200 | 210 | 1.6 | 250 | 500 | 720 |
2 | 230 | 240 | 1.5 | 230 | 500 | 720 | |
3 | 220 | 230 | 1.4 | 240 | 500 | 720 | |
C3(P2) | 1 | 35 | 100 | 1.7 | 25 | 10 | 600 |
2 | 25 | 120 | 1.8 | 22 | 10 | 600 | |
3 | 45 | 150 | 1.8 | 23 | 10 | 600 | |
C4(P2) | 1 | 110 | 160 | 1.2 | 25 | 10 | 700 |
2 | 100 | 150 | 1.3 | 22 | 10 | 700 | |
3 | 120 | 160 | 1.4 | 23 | 10 | 700 | |
C5(P3) | 1 | 75 | 130 | 1.5 | 30 | 15 | 650 |
2 | 65 | 120 | 1.6 | 30 | 15 | 650 | |
3 | 55 | 110 | 1.5 | 30 | 15 | 650 | |
C6(P3) | 1 | 180 | 190 | 1.4 | 200 | 1000 | 700 |
2 | 200 | 210 | 1.5 | 200 | 1000 | 700 | |
3 | 230 | 240 | 1.6 | 200 | 1000 | 700 | |
Hu | 280 | 279 | 1.8 | ||||
Cu | 15 | 20 | 1.0 |
1 | 韩松. 中国能源结构与产业结构协调发展关系研究综述与展望[J]. 工程建设标准化, 2020(9): 60-70. |
Han S. Review and prospect of the research on coordinated development of China's energy structure and industrial structure[J]. Standardization of Engineering Construction, 2020(9): 60-70. | |
2 | 张建新. 21世纪的国际能源安全问题[J]. 国际安全研究, 2013, 31(6): 124-149, 154. |
Zhang J X. International energy security in the 21th century[J]. Journal of International Security Studies, 2013, 31(6): 124-149, 154. | |
3 | 孙涛, 崔国民, 陈家星, 等. 采用分流比差异优化策略的RWCE算法优化换热网络[J]. 工程热物理学报, 2019, 40(1): 183-190. |
Sun T, Cui G M, Chen J X, et al. Split ratio difference optimization strategy of RWCE algorithm for heat exchanger network synthesis[J]. Journal of Engineering Thermophysics, 2019, 40(1): 183-190. | |
4 | Kachacha C, Zoughaib A, Tran C T. A methodology for the flexibility assessment of site wide heat integration scenarios[J]. Energy, 2018, 154: 231-239. |
5 | 何金春, 金俊杰, 孙晋. 炼厂丙烯精制单元换热网络模拟与优化[J]. 石化技术与应用, 2019, 37(2): 116-120. |
He J C, Jin J J, Sun J. Simulation and optimization of heat exchanger network in propylene refining unit of refinery[J]. Petrochemical Technology & Application, 2019, 37(2): 116-120. | |
6 | Linnhoff B, Mason D R, Wardle I. Understanding heat exchanger networks[J]. Computers & Chemical Engineering, 1979, 3(1/2/3/4): 295-302. |
7 | Linnhoff B, Flower J R. Synthesis of heat exchanger networks(I): Systematic generation of energy optimal networks[J]. AIChE Journal, 1978, 24(4): 633-642. |
8 | Linnhoff B, Dunford H, Smith R. Heat integration of distillation columns into overall processes[J]. Chemical Engineering Science, 1983, 38(8): 1175-1188. |
9 | Trivedi K K, O'Neill B K, Roach J R. Synthesis of heat exchanger networks featuring multiple pinch points[J]. Computers & Chemical Engineering, 1989, 13(3): 291-294. |
10 | Asante N D K, Zhu X X. An automated approach for heat exchanger network retrofit featuring minimal topology modifications[J]. Computers & Chemical Engineering, 1996, 20: S7-S12. |
11 | Varbanov P S, Klemeš J J. Total sites integrating renewables with extended heat transfer and recovery[J]. Heat Transfer Engineering, 2010, 31(9): 733-741. |
12 | Cerda J, Westerberg A W, Mason D, et al. Minimum utility usage in heat exchanger network synthesis A transportation problem[J]. Chemical Engineering Science, 1983, 38(3): 373-387. |
13 | Floudas C A, Ciric A R, Grossmann I E. Automatic synthesis of optimum heat exchanger network configurations[J]. AIChE Journal, 1986, 32(2): 276-290. |
14 | Dolan W B, Cummings P T, Le Van M D. Algorithmic efficiency of simulated annealing for heat exchanger network design[J]. Computers & Chemical Engineering, 1990, 14(10): 1039-1050. |
15 | Zhu X, O'Neill B, Roach J, et al. A method for automated heat-exchanger network synthesis using block decomposition and nonlinear optimization[J]. Chemical Engineering Research & Design, 1995, 73: 919-930. |
16 | Huang K F, Al-mutairi E M, Karimi I A. Heat exchanger network synthesis using a stagewise superstructure with non-isothermal mixing[J]. Chemical Engineering Science, 2012, 73: 30-43 |
17 | Faria D C, Kim S Y, Bagajewicz M J. Global optimization of the stage-wise superstructure model for heat exchanger networks[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1595-1604. |
18 | Mistry M, Misener R. Optimising heat exchanger network synthesis using convexity properties of the logarithmic mean temperature difference[J]. Computers & Chemical Engineering, 2016, 94: 1-17. |
19 | Chang C L, Chen X L, Wang Y F, et al. Simultaneous synthesis of multi-plant heat exchanger networks using process streams across plants[J]. Computers & Chemical Engineering, 2017, 101: 95-109. |
20 | Chang C L, Chen X L, Wang Y F, et al. Simultaneous optimization of multi-plant heat integration using intermediate fluid circles[J]. Energy, 2017, 121: 306-317. |
21 | Chang C L, Chen X L, Wang Y F, et al. An efficient optimization algorithm for waste heat integration using a heat recovery loop between two plants[J]. Applied Thermal Engineering, 2016, 105: 799-806. |
22 | Kang L X, Liu Y Z, Wu L. Synthesis of multi-period heat exchanger networks based on features of sub-period durations[J]. Energy, 2016, 116: 1302-1311. |
23 | Babak F, Hadi S, Reza H, et al. A novel two surfaces hybrid approach for multi-period heat exchanger networks synthesis by combination of imperialist competitive algorithm and linear programming method[J]. Chemical Engineering Science, 2022, 258: 117755. |
24 | Lakner R, Orosz Á, How B S, et al. Synthesis of multiperiod heat exchanger networks: minimum utility consumption in each period[J]. Computers & Chemical Engineering, 2022, 166: 107949. |
25 | Kim S Y, Jongsuwat P, Suriyapraphadilok U, et al. Global optimization of heat exchanger networks(part 1): Stages/substages superstructure[J]. Industrial & Engineering Chemistry Research, 2017, 56(20): 5944-5957. |
26 | Kim S Y, Bagajewicz M. Global optimization of heat exchanger networks using a new generalized superstructure[J]. Chemical Engineering Science, 2016, 147: 30-46. |
27 | Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration ( Ⅲ ) : Process and heat exchanger network optimization[J]. Computers & Chemical Engineering, 1990, 14(11): 1185-1200. |
28 | Yee T F, Grossmann I E, Kravanja Z. Simultaneous optimization models for heat integration ( Ⅰ ) : Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1151-1164. |
29 | Yee T F, Grossmann I E. Simultaneous optimization models for heat integration(Ⅱ): Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184. |
30 | Chen J J J. Comments on improvements on a replacement for the logarithmic mean[J]. Chemical Engineering Science, 1987, 42(10): 2488-2489. |
31 | Stijepovic M Z, Linke P. Optimal waste heat recovery and reuse in industrial zones[J]. Energy, 2011, 36(7): 4019-4031. |
[1] | Long ZHANG, Mengjie SONG, Keke SHAO, Xuan ZHANG, Jun SHEN, Runmiao GAO, Zekang ZHEN, Zhengyong JIANG. Simulation study on frosting at windward fin end of heat exchanger [J]. CIESC Journal, 2023, 74(S1): 179-182. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Qihong ZOU, Qian LI, Tianshu GE. Experimental study of two-stage parallel desiccant coated heat pump system based on multi-objectives [J]. CIESC Journal, 2023, 74(S1): 265-271. |
[4] | Qian MING, Yi GAO, Jian HU, Shengjie LI, Jinjiang WANG. Virtual sensing method for leakage fault of heat exchanger [J]. CIESC Journal, 2023, 74(4): 1836-1846. |
[5] | Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger [J]. CIESC Journal, 2023, 74(3): 1352-1359. |
[6] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[7] | Liwen ZHAO, Guilian LIU. Load-shift laws and bottleneck identification strategy of disturbed heat exchanger network [J]. CIESC Journal, 2023, 74(11): 4611-4621. |
[8] | Shuaihang JI, Jinjiang WANG, Rui CAI, Xuehao SUN, Weifeng GE. Research on reduced order modeling and intelligent sensing method for heat exchangers driven by digital twin [J]. CIESC Journal, 2023, 74(10): 4218-4228. |
[9] | Wei HE, Yongna CAO, Hongru SHANG, Yinxue LI, Chao GUO, Yanling YU. Optimum design and performance analysis of waste heat recovery system for biomass fermentation [J]. CIESC Journal, 2023, 74(10): 4302-4310. |
[10] | Wei LU, Ran MIAO, Zhigen WU, Changchun WU, Wei XIE. Experimental study on flow and heat transfer of non-Newtonian fluid in a corrugated double-tube heat exchanger [J]. CIESC Journal, 2022, 73(7): 2924-2932. |
[11] | Wenting DUAN, Siyue REN, Xiao FENG, Yufei WANG. Distillation column pressure optimization integrated with the heat exchanger network [J]. CIESC Journal, 2022, 73(5): 2052-2059. |
[12] | Ye WANG, Xinyue ZHU, Zhendong SUN. Flow and heat transfer characteristics analysis of flat tube-bank-fin heat exchanger with sine wave fin based on POD reduced-order model [J]. CIESC Journal, 2022, 73(5): 1986-1994. |
[13] | Weiwei LIU, Guomin CUI, Lu ZHANG, Yuan XIAO, Qiguo YANG, Guanhua ZHANG. Damping optimization method for heat exchange network synthesis [J]. CIESC Journal, 2022, 73(5): 2060-2072. |
[14] | Fengli ZHANG, Hui PAN, Jinjiang WANG. Multi-parameter correlation early warning method of heat exchanger based on multivariate state estimation [J]. CIESC Journal, 2022, 73(2): 814-826. |
[15] | Zhiqiang ZHOU, Guomin CUI, Ling YANG, Xiubao MA, Yuan XIAO, Qiguo YANG. A hybrid algorithm based on parallel computing for heat exchanger network optimization with stream splits [J]. CIESC Journal, 2022, 73(2): 801-813. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||