CIESC Journal ›› 2023, Vol. 74 ›› Issue (12): 4934-4944.DOI: 10.11949/0438-1157.20230978
• Separation engineering • Previous Articles Next Articles
Deqi KONG1(), Yingying ZHANG2, Wenling WU1, Jun MA2, Zhenxing SONG2, Donghui ZHANG1(), Yanjun ZHANG2()
Received:
2023-09-21
Revised:
2023-12-04
Online:
2024-02-19
Published:
2023-12-25
Contact:
Donghui ZHANG, Yanjun ZHANG
孔德齐1(), 张莹莹2, 武文玲1, 马军2, 宋振兴2, 张东辉1(), 张彦军2()
通讯作者:
张东辉,张彦军
作者简介:
孔德齐(1999—),男,硕士研究生,kongdeqi@tju.edu.cn
基金资助:
CLC Number:
Deqi KONG, Yingying ZHANG, Wenling WU, Jun MA, Zhenxing SONG, Donghui ZHANG, Yanjun ZHANG. Simulation and analysis of oxygen production process by six-bed pressure swing adsorption process[J]. CIESC Journal, 2023, 74(12): 4934-4944.
孔德齐, 张莹莹, 武文玲, 马军, 宋振兴, 张东辉, 张彦军. 六塔变压吸附制氧工艺的模拟与分析[J]. 化工学报, 2023, 74(12): 4934-4944.
Add to citation manager EndNote|Ris|BibTeX
步骤 | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 |
---|---|---|---|---|---|---|
1 | AD1 | ER1 | ER3 | BD | ED3 | ED1 |
2 | AD2 | PR | ER2 | PUR | CoD | ED2 |
3 | ED1 | AD1 | ER1 | ER3 | BD | ED3 |
4 | ED2 | AD2 | PR | ER2 | PUR | CoD |
5 | ED3 | ED1 | AD1 | ER1 | ER3 | BD |
6 | CoD | ED2 | AD2 | PR | ER2 | PUR |
7 | BD | ED3 | ED1 | AD1 | ER1 | ER3 |
8 | PUR | CoD | ED2 | AD2 | PR | ER2 |
9 | ER3 | BD | ED3 | ED1 | AD1 | ER1 |
10 | ER2 | PUR | CoD | ED2 | AD2 | PR |
11 | ER1 | ER3 | BD | ED3 | ED1 | AD1 |
12 | PR | ER2 | PUR | CoD | ED2 | AD2 |
Table 1 The schedule of six-bed PSA
步骤 | 塔1 | 塔2 | 塔3 | 塔4 | 塔5 | 塔6 |
---|---|---|---|---|---|---|
1 | AD1 | ER1 | ER3 | BD | ED3 | ED1 |
2 | AD2 | PR | ER2 | PUR | CoD | ED2 |
3 | ED1 | AD1 | ER1 | ER3 | BD | ED3 |
4 | ED2 | AD2 | PR | ER2 | PUR | CoD |
5 | ED3 | ED1 | AD1 | ER1 | ER3 | BD |
6 | CoD | ED2 | AD2 | PR | ER2 | PUR |
7 | BD | ED3 | ED1 | AD1 | ER1 | ER3 |
8 | PUR | CoD | ED2 | AD2 | PR | ER2 |
9 | ER3 | BD | ED3 | ED1 | AD1 | ER1 |
10 | ER2 | PUR | CoD | ED2 | AD2 | PR |
11 | ER1 | ER3 | BD | ED3 | ED1 | AD1 |
12 | PR | ER2 | PUR | CoD | ED2 | AD2 |
数学模型 | 数学方程 | 序号 |
---|---|---|
质量守恒方程 | (1) | |
(2) | ||
能量守恒方程 | (3) | |
(4) | ||
(5) | ||
动量守恒方程(Ergun方程) | (6) | |
吸附等温线方程 | (7) | |
LDF方程 | (8) | |
压缩机模型 | (9) | |
缓冲罐模型 | (10) | |
线性阀门模型 | (11) |
Table 2 The mathematical models of PSA process
数学模型 | 数学方程 | 序号 |
---|---|---|
质量守恒方程 | (1) | |
(2) | ||
能量守恒方程 | (3) | |
(4) | ||
(5) | ||
动量守恒方程(Ergun方程) | (6) | |
吸附等温线方程 | (7) | |
LDF方程 | (8) | |
压缩机模型 | (9) | |
缓冲罐模型 | (10) | |
线性阀门模型 | (11) |
参数 | N2 | O2 |
---|---|---|
IP1/(mol·kg-1·bar-1) | 7.895×10-4 | 1.224×10-2 |
IP2/K | 1750 | 626.5 |
IP3/bar-1 | 6.220×10-3 | 6.737×10-3 |
IP4/K | 721.2 | 174.1 |
R2 | 0.9989 | 0.9982 |
ΔH/(kJ·mol-1) | -15.82 | -5.03 |
Table 3 Fitting parameters of extended Langmuir 2 model
参数 | N2 | O2 |
---|---|---|
IP1/(mol·kg-1·bar-1) | 7.895×10-4 | 1.224×10-2 |
IP2/K | 1750 | 626.5 |
IP3/bar-1 | 6.220×10-3 | 6.737×10-3 |
IP4/K | 721.2 | 174.1 |
R2 | 0.9989 | 0.9982 |
ΔH/(kJ·mol-1) | -15.82 | -5.03 |
参数 | 数值 |
---|---|
ρb/(kg·m-3) | 626.0 |
cps/(kJ·kg-1·K-1) | 0.92 |
rp/m | 0.00194 |
εb | 0.38 |
εp | 0.384 |
ks/(W·m-1·K-1) | 0.349 |
2.05 | |
4.98 | |
Hb/m | 1.23 |
Wt/m | 0.003 |
Db/m | 0.213 |
ρw/(kg·m-3) | 7850 |
cpw/(kJ·kg-1·K-1) | 0.46 |
hw/(W·m-2·K-1) | 60 |
kw/(W·m-1·K-1) | 45.3 |
Tamb/K | 293.15 |
Tfeed/K | 293.15 |
Table 4 Parameters of adsorbent and adsorption bed
参数 | 数值 |
---|---|
ρb/(kg·m-3) | 626.0 |
cps/(kJ·kg-1·K-1) | 0.92 |
rp/m | 0.00194 |
εb | 0.38 |
εp | 0.384 |
ks/(W·m-1·K-1) | 0.349 |
2.05 | |
4.98 | |
Hb/m | 1.23 |
Wt/m | 0.003 |
Db/m | 0.213 |
ρw/(kg·m-3) | 7850 |
cpw/(kJ·kg-1·K-1) | 0.46 |
hw/(W·m-2·K-1) | 60 |
kw/(W·m-1·K-1) | 45.3 |
Tamb/K | 293.15 |
Tfeed/K | 293.15 |
指标 | 计算公式 | 序号 |
---|---|---|
纯度( | (12) | |
回收率( | (13) | |
生产能力( | (14) |
Table 5 Process performance indicator
指标 | 计算公式 | 序号 |
---|---|---|
纯度( | (12) | |
回收率( | (13) | |
生产能力( | (14) |
模拟工况 | 吸附压力/bar | 步骤时长/s | 产品流量/(m3·h-1) | O2纯度/% | O2回收率/% | 生产能力/(m3·h-1·kg-1) |
---|---|---|---|---|---|---|
1 | 6 | 7 | 6 | 95.38 | 40.45 | 3.48×10-2 |
2 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
3 | 6 | 9 | 6 | 91.87 | 52.00 | 3.35×10-2 |
4 | 6 | 10 | 6 | 89.17 | 57.26 | 3.25×10-2 |
5 | 6 | 11 | 6 | 86.03 | 60.58 | 3.14×10-2 |
6 | 6 | 12 | 6 | 82.46 | 62.95 | 3.01×10-2 |
7 | 4 | 8 | 6 | 80.53 | 57.67 | 2.94×10-2 |
8 | 4.5 | 8 | 6 | 86.24 | 55.09 | 3.14×10-2 |
9 | 5 | 8 | 6 | 89.74 | 53.16 | 3.27×10-2 |
10 | 5.5 | 8 | 6 | 92.19 | 50.44 | 3.36×10-2 |
11 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
12 | 6 | 8 | 4.5 | 96.19 | 37.31 | 2.63×10-2 |
13 | 6 | 8 | 5 | 95.27 | 40.94 | 2.89×10-2 |
14 | 6 | 8 | 5.5 | 94.73 | 43.85 | 3.16×10-2 |
15 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
16 | 6 | 8 | 6.5 | 92.81 | 49.64 | 3.66×10-2 |
17 | 6 | 8 | 7 | 91.62 | 52.21 | 3.90×10-2 |
18 | 6 | 8 | 7.5 | 90.31 | 54.53 | 4.11×10-2 |
19 | 6 | 8 | 8 | 88.85 | 56.60 | 4.32×10-2 |
Table 6 The simulation results of six-bed PSA process
模拟工况 | 吸附压力/bar | 步骤时长/s | 产品流量/(m3·h-1) | O2纯度/% | O2回收率/% | 生产能力/(m3·h-1·kg-1) |
---|---|---|---|---|---|---|
1 | 6 | 7 | 6 | 95.38 | 40.45 | 3.48×10-2 |
2 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
3 | 6 | 9 | 6 | 91.87 | 52.00 | 3.35×10-2 |
4 | 6 | 10 | 6 | 89.17 | 57.26 | 3.25×10-2 |
5 | 6 | 11 | 6 | 86.03 | 60.58 | 3.14×10-2 |
6 | 6 | 12 | 6 | 82.46 | 62.95 | 3.01×10-2 |
7 | 4 | 8 | 6 | 80.53 | 57.67 | 2.94×10-2 |
8 | 4.5 | 8 | 6 | 86.24 | 55.09 | 3.14×10-2 |
9 | 5 | 8 | 6 | 89.74 | 53.16 | 3.27×10-2 |
10 | 5.5 | 8 | 6 | 92.19 | 50.44 | 3.36×10-2 |
11 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
12 | 6 | 8 | 4.5 | 96.19 | 37.31 | 2.63×10-2 |
13 | 6 | 8 | 5 | 95.27 | 40.94 | 2.89×10-2 |
14 | 6 | 8 | 5.5 | 94.73 | 43.85 | 3.16×10-2 |
15 | 6 | 8 | 6 | 93.83 | 46.85 | 3.42×10-2 |
16 | 6 | 8 | 6.5 | 92.81 | 49.64 | 3.66×10-2 |
17 | 6 | 8 | 7 | 91.62 | 52.21 | 3.90×10-2 |
18 | 6 | 8 | 7.5 | 90.31 | 54.53 | 4.11×10-2 |
19 | 6 | 8 | 8 | 88.85 | 56.60 | 4.32×10-2 |
流程 | 吸附剂 | 纯度/% | 回收率/% | 产品流量 | 文献 |
---|---|---|---|---|---|
两塔PSA | LiLSX | 92 | 40 | 13.57 L·min-1 | [ |
两塔PSA | 13X | 94 | 33 | 40 L·min-1 | [ |
两塔PSA | LiLSX | 93.59 | 40.7 | 6 m3·h-1(标准状况) | [ |
两塔PSA | LiX | 95.5 | 36 | 104 L·min-1 | [ |
六塔PSA | 13X | 93.83 | 46.85 | 6 m3·h-1 | 本文 |
Table 7 Comparison of process performance between this work and existing literatures
流程 | 吸附剂 | 纯度/% | 回收率/% | 产品流量 | 文献 |
---|---|---|---|---|---|
两塔PSA | LiLSX | 92 | 40 | 13.57 L·min-1 | [ |
两塔PSA | 13X | 94 | 33 | 40 L·min-1 | [ |
两塔PSA | LiLSX | 93.59 | 40.7 | 6 m3·h-1(标准状况) | [ |
两塔PSA | LiX | 95.5 | 36 | 104 L·min-1 | [ |
六塔PSA | 13X | 93.83 | 46.85 | 6 m3·h-1 | 本文 |
1 | Kansha Y, Kishimoto A, Nakagawa T, et al. A novel cryogenic air separation process based on self-heat recuperation[J]. Separation and Purification Technology, 2011, 77(3): 389-396. |
2 | Murali R S, Sankarshana T, Sridhar S. Air separation by polymer-based membrane technology[J]. Separation & Purification Reviews, 2013, 42(2): 130-186. |
3 | Chiang A S T, Chung Y L, Cheng C W, et al. Experimental study on a four-bed PSA air separation process[J]. AIChE Journal, 1994, 40(12): 1976-1982. |
4 | Ruthven D M. Principles of Adsorption and Adsorption Processes[M]. New York: Wiley, 1984. |
5 | Ackley M W. Medical oxygen concentrators: a review of progress in air separation technology[J]. Adsorption, 2019, 25(8): 1437-1474. |
6 | Chin C, Kamin Z, Bahrun M H V, et al. The production of industrial-grade oxygen from air by pressure swing adsorption[J]. International Journal of Chemical Engineering, 2023, 2023: 1-11. |
7 | Bhat A A, Mang H, Rajkumar S, et al. On-board oxygen generation using high performance molecular sieve[J]. Defence Life Science Journal, 2017, 2(4): 380. |
8 | Zhang Q L, Liu Y S, Li Z Y, et al. Experimental study on oxygen concentrator with wide product flow rate range: individual parametric effect and process improvement strategy[J]. Separation and Purification Technology, 2021, 274: 118918. |
9 | Rao V R, Kothare M V, Sircar S. Novel design and performance of a medical oxygen concentrator using a rapid pressure swing adsorption concept[J]. AIChE Journal, 2014, 60(9): 3330-3335. |
10 | Liu Y S, Zhang Q L, Cao Y Z, et al. Effect of intermittent purge on O2 production with rapid pressure swing adsorption technology[J]. Adsorption, 2021, 27(2): 181-189. |
11 | Zhu X Q, Liu Y S, Yang R T. Effects of operating temperature on the performance of small scale rapid cycle pressure swing adsorption air separation process[J]. Adsorption, 2021, 27(2): 205-212. |
12 | Fernandez G F, Kenney C N. Modelling of the pressure swing air seperation process[J]. Chemical Engineering Science, 1983, 38(6): 827-834. |
13 | Farooq S, Ruthven D M. Numerical simulation of a kinetically controlled pressure swing adsorption bulk separation process based on a diffusion model[J]. Chemical Engineering Science, 1991, 46(9): 2213-2224. |
14 | Da Silva F A, Silva J A, Rodrigues A E. A general package for the simulation of cyclic adsorption processes[J]. Adsorption, 1999, 5(3): 229-244. |
15 | Rao V R, Kothare M V, Sircar S. Numerical simulation of rapid pressurization and depressurization of a zeolite column using nitrogen[J]. Adsorption, 2014, 20(1): 53-60. |
16 | Zhang C, Shen Y H, Zhang D H, et al. Vacuum pressure swing adsorption for producing fuel cell grade hydrogen from IGCC[J]. Energy, 2022, 257: 124715. |
17 | Liu B, Yu X X, Shi W R, et al. Two-stage VSA/PSA for capturing carbon dioxide (CO2) and producing hydrogen (H2) from steam-methane reforming gas[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24870-24882. |
18 | Jahromi P E, Fatemi S, Vatani A, et al. Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption[J]. Separation and Purification Technology, 2018, 193: 91-102. |
19 | Santos J C, Portugal A F, Magalhães F D, et al. Simulation and optimization of small oxygen pressure swing adsorption units[J]. Industrial & Engineering Chemistry Research, 2004, 43(26): 8328-8338. |
20 | Tian T, Wang Y Y, Liu B, et al. Simulation and experiment of six-bed PSA process for air separation with rotating distribution valve[J]. Chinese Journal of Chemical Engineering, 2022, 42: 329-337. |
21 | Mofarahi M, Towfighi J, Fathi L. Oxygen separation from air by four-bed pressure swing adsorption[J]. Industrial & Engineering Chemistry Research, 2009, 48(11): 5439-5444. |
22 | Qadir S, Li D F, Gu Y M, et al. Experimental and numerical analysis on the enhanced separation performance of a medical oxygen concentrator through two-bed rapid pressure swing adsorption[J]. Industrial & Engineering Chemistry Research, 2021, 60(16): 5903-5913. |
23 | Ding Z Y, Han Z Y, Fu Q, et al. Optimization and analysis of the VPSA process for industrial-scale oxygen production[J]. Adsorption, 2018, 24(5): 499-516. |
24 | Park Y J, Lee S J, Moon J H, et al. Adsorption equilibria of O2, N2, and Ar on carbon molecular sieve and zeolites 10X, 13X, and LiX[J]. Journal of Chemical & Engineering Data, 2006, 51(3): 1001-1008. |
25 | Wang Y Y, An Y X, Ding Z Y, et al. Integrated VPSA processes for air separation based on dual reflux configuration[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6562-6575. |
26 | Shi W R, Yang H W, Shen Y H, et al. Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19057-19074. |
27 | Sun W N, Shen Y H, Zhang D H, et al. A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7489-7501. |
28 | Chen S R, Shen Y H, Guan Z B, et al. Adsorption properties of SF6 on zeolite NaY, 13X, activated carbon, and silica gel[J]. Journal of Chemical & Engineering Data, 2020, 65(8): 4044-4051. |
29 | Wu T B, Shen Y H, Feng L, et al. Adsorption properties of N2O on zeolite 5A, 13X, activated carbon, ZSM-5, and silica gel[J]. Journal of Chemical & Engineering Data, 2019, 64(8): 3473-3482. |
30 | Park D, Ju Y, Kim J H, et al. Equilibrium and kinetics of nitrous oxide, oxygen and nitrogen adsorption on activated carbon and carbon molecular sieve[J]. Separation and Purification Technology, 2019, 223: 63-80. |
31 | Chou C T, Chen C Y. Carbon dioxide recovery by vacuum swing adsorption[J]. Separation and Purification Technology, 2004, 39(1/2): 51-65. |
32 | Tian C X, Fu Q, Ding Z Y, et al. Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2 [J]. Separation and Purification Technology, 2017, 189: 54-65. |
33 | Liu W, Ji Y, Wang R Q, et al. Analysis on temperature vacuum swing adsorption integrated with heat pump for efficient carbon capture[J]. Applied Energy, 2023, 335: 120757. |
34 | Hu G P, Zhao Q H, Tao L F, et al. Enrichment of low grade CH4 from N2/CH4 mixtures using vacuum swing adsorption with activated carbon[J]. Chemical Engineering Science, 2021, 229: 116152. |
35 | Arora A, Faruque Hasan M M. Flexible oxygen concentrators for medical applications[J]. Scientific Reports, 2021, 11: 14317. |
36 | 刘应书, 张全立, 刘文海, 等. PSA制氧过程产品气流量对其氧气体积分数的影响[J]. 工程科学学报, 2020, 42(11): 1507-1515. |
Liu Y S, Zhang Q L, Liu W H, et al. Influence of product flow rate on O2 volume fraction in PSA oxygen generation process[J]. Chinese Journal of Engineering, 2020, 42(11): 1507-1515. | |
37 | 张辉, 刘应书, 党璐璐, 等. 微型变压吸附低压差吸附工艺[J]. 化工进展, 2009, 28(11): 1901-1905. |
Zhang H, Liu Y S, Dang L L, et al. Experimental study on low differential pressure adsorption process of small-scale oxygen generation by pressure swing adsorption[J]. Chemical Industry and Engineering Progress, 2009, 28(11): 1901-1905. | |
38 | 曹永正, 刘应书. 两塔变压吸附循环中两步均压的研究[J]. 湖南师范大学自然科学学报, 2016, 39(2): 53-58. |
Cao Y Z, Liu Y S. The study of the two-stage pressure equalization step in the two-bed PSA cycle[J]. Journal of Natural Science of Hunan Normal University, 2016, 39(2): 53-58. | |
39 | Zheng X G, Liu Y S, Liu W H. Two-dimensional modeling of the transport phenomena in the adsorber during pressure swing adsorption process[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11814-11824. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[8] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[9] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[10] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[11] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[12] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[13] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[14] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[15] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||