CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 585-598.DOI: 10.11949/0438-1157.20221204
• Reviews and monographs • Previous Articles Next Articles
Tanjie ZHA1(), Han YANG2, Hejie QIN2(), Xiaohong GUAN1,2
Received:
2022-09-05
Revised:
2022-12-25
Online:
2023-03-21
Published:
2023-02-05
Contact:
Hejie QIN
通讯作者:
秦荷杰
作者简介:
查坦捷(1995—),男,硕士研究生,892788451@qq.com
基金资助:
CLC Number:
Tanjie ZHA, Han YANG, Hejie QIN, Xiaohong GUAN. The construction of biomimetic materials and their research progress in the field of aquatic environmental chemistry[J]. CIESC Journal, 2023, 74(2): 585-598.
查坦捷, 杨涵, 秦荷杰, 关小红. 仿生材料的构建及其在水环境化学领域中的研究进展[J]. 化工学报, 2023, 74(2): 585-598.
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速率常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
磺酸酞菁铁负载于 中孔分子筛 | 0.1 mmol/L 孔雀绿 | 材料+H2O2+可见光 | 光照:500 W卤灯,可见光;T=50℃;pH0=6.0; [材料]=200 mg/L,[H2O2]=6.0 mmol/L | 污染物:100%(1200 min) TOC:72%(1200 min) | 0.00387 min-1 | HO• | [ |
四羧基酞菁铁(3.6%(质量))负载于大孔 SiO2 | 10 μmol/L 罗丹明B | 材料+O2+可见光 | 光照:150 W,λ≥400 nm;[材料]=1 g/L | 97.4%(60 min) | 0.06 min-1 | — | [ |
酞菁铁(3.8 mg Fe/g)负 载于改性聚丙烯腈纤维 | 0.02 mmol/L 罗丹明B | 材料+H2O2;材料+ H2O2+可见光 | 光照:9.11 mW/cm2,λ>420 nm;T=(25±1)℃; pH0=6.0;[材料]=4 g/L,[H2O2]=5 mmol/L | 83%(60 min) 99%(60 min) | — | Fe(Ⅳ)O、HO• | [ |
酞菁铁负载于改性 聚丙烯腈纤维 | 100 mg/L盐酸 四环素 | 材料+PMS | T=298 K;pH0=4.0;[材料]=0.5 g/L, [PMS]=2.0 mmol/L | 污染物:83%(280 min) TOC:30%(280 min) | 0.00035 min-1 | SO | [ |
酞菁铁(1.47 mg Fe/g) 负载于聚苯乙烯 | 100 mg/L盐酸 土霉素 | 材料+ H2O2 | T=308 K;pH0=4.0;[材料]=0.5 g/L, [H2O2]=60 mmol/L | 90%(500 min) | — | HO• | [ |
酞菁铁(0.16 mmol/g) 负载于改性多壁 碳纳米管 | 0.05 mmol/L 四氯苯酚 | 材料+ H2O2 | T=50℃;pH0=7;[材料]=0.1 g/L,[H2O2]=5 mmol/L | 100%(90 min) | 0.06293 min-1 | HO•、HOO• | [ |
三硝基酞菁铁(2.92 mg Fe/g)负载于活性碳 纤维 | 0.05 mmol/L磺胺 甲唑 | 材料+ H2O2 | T=50℃;[材料]=0.1 g/L;[H2O2]=20 mmol/L | 99%(90 min) | — | HO•、Fe(Ⅳ)O、HOO• | [ |
聚酞菁铁负载于g-C3N4 | 25 μmol/L卡马 西平 | 材料+PMS+光 | 光照:模拟太阳光;pH0=7;[材料]=0.1 g/L, [PMS]=0.3 mmol/L | 100%(15 min) | — | 1O2、SO | [ |
酞菁铁负载于TiO2 | 10 mg/L甲基橙 | 材料+H2O2+可见光 | 光照:150 W,28 mW/cm2,λ>400 nm;T=50℃; pH0=7;[材料]=0.5 g/L | 94%(180 min) | — | HO• | [ |
酞菁铁(0.52%(质量)Fe)负载于海绵 | 2 mg/L双酚A | 材料+H2O2+紫外光 | 光照:紫外光,λ>150 nm;pH0=2;[材料]=0.04 g, [H2O2]=0.32 mol/L | 100%(20 min) | 0.0918 min-1 (20 mg/L双酚A) | HO• | [ |
酞菁铁负载于钴尖晶石 | 10 mg/L罗丹明B | 材料+ H2O2 | T=25℃;[材料]=0.50 g/L,[H2O2]=50 mmol/L | 90%(120 min) | 0.02167 min-1 | O | [ |
酞菁钴(16.5%(质量)) 负载于改性多壁碳 纳米管 | 0.05 mmol/L 酸性红 | 材料+H2O2 | T=50℃;pH0=10;[材料] =0.1 g/L, [H2O2] =0.01 mol/L | >98%(60 min) | — | Co(Ⅳ)O | [ |
酞菁钴(14.9 μmol/g) 负载于纤维素 | 0.05 mmol/L 酸性红 | 材料+ H2O2 材料+PMS | T=50℃;pH0=6.7;[材料]=2.0 g/L, [PMS]=1.0 mmol/L,[H2O2]=1.0 mmol/L | 5%(35 min,H2O2体系);100%(35 min,PMS体系) | 0.0003 min-1(H2O2体系);0.0688 min-1(PMS体系) | PMS体系:SO | [ |
酞菁钴负载于改性 分子筛 | 5 mg/L普兰洛尔 | 材料+PMS | T=25℃;pH0=5.7±0.2;[材料]=0.1 g/L, [PMS]=0.2 g/L | 93.6%(30 min) | 0.0920 min-1 | 1O2、SO | [ |
磺酸基酞菁钴(2.24% (质量))负载于TiO2 | 40 mg/L 2,4- 二氯酚 | 材料+ H2O2+紫外光 | 光照:400 W,紫外光;pH0=5;[材料]=0.2 g/L,[H2O2]=0.03 mol/L | 94%(150 min) | — | [ |
Table 1 The performance of bioactive molecule-loaded materials for the oxidative removal of contaminants
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速率常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
磺酸酞菁铁负载于 中孔分子筛 | 0.1 mmol/L 孔雀绿 | 材料+H2O2+可见光 | 光照:500 W卤灯,可见光;T=50℃;pH0=6.0; [材料]=200 mg/L,[H2O2]=6.0 mmol/L | 污染物:100%(1200 min) TOC:72%(1200 min) | 0.00387 min-1 | HO• | [ |
四羧基酞菁铁(3.6%(质量))负载于大孔 SiO2 | 10 μmol/L 罗丹明B | 材料+O2+可见光 | 光照:150 W,λ≥400 nm;[材料]=1 g/L | 97.4%(60 min) | 0.06 min-1 | — | [ |
酞菁铁(3.8 mg Fe/g)负 载于改性聚丙烯腈纤维 | 0.02 mmol/L 罗丹明B | 材料+H2O2;材料+ H2O2+可见光 | 光照:9.11 mW/cm2,λ>420 nm;T=(25±1)℃; pH0=6.0;[材料]=4 g/L,[H2O2]=5 mmol/L | 83%(60 min) 99%(60 min) | — | Fe(Ⅳ)O、HO• | [ |
酞菁铁负载于改性 聚丙烯腈纤维 | 100 mg/L盐酸 四环素 | 材料+PMS | T=298 K;pH0=4.0;[材料]=0.5 g/L, [PMS]=2.0 mmol/L | 污染物:83%(280 min) TOC:30%(280 min) | 0.00035 min-1 | SO | [ |
酞菁铁(1.47 mg Fe/g) 负载于聚苯乙烯 | 100 mg/L盐酸 土霉素 | 材料+ H2O2 | T=308 K;pH0=4.0;[材料]=0.5 g/L, [H2O2]=60 mmol/L | 90%(500 min) | — | HO• | [ |
酞菁铁(0.16 mmol/g) 负载于改性多壁 碳纳米管 | 0.05 mmol/L 四氯苯酚 | 材料+ H2O2 | T=50℃;pH0=7;[材料]=0.1 g/L,[H2O2]=5 mmol/L | 100%(90 min) | 0.06293 min-1 | HO•、HOO• | [ |
三硝基酞菁铁(2.92 mg Fe/g)负载于活性碳 纤维 | 0.05 mmol/L磺胺 甲唑 | 材料+ H2O2 | T=50℃;[材料]=0.1 g/L;[H2O2]=20 mmol/L | 99%(90 min) | — | HO•、Fe(Ⅳ)O、HOO• | [ |
聚酞菁铁负载于g-C3N4 | 25 μmol/L卡马 西平 | 材料+PMS+光 | 光照:模拟太阳光;pH0=7;[材料]=0.1 g/L, [PMS]=0.3 mmol/L | 100%(15 min) | — | 1O2、SO | [ |
酞菁铁负载于TiO2 | 10 mg/L甲基橙 | 材料+H2O2+可见光 | 光照:150 W,28 mW/cm2,λ>400 nm;T=50℃; pH0=7;[材料]=0.5 g/L | 94%(180 min) | — | HO• | [ |
酞菁铁(0.52%(质量)Fe)负载于海绵 | 2 mg/L双酚A | 材料+H2O2+紫外光 | 光照:紫外光,λ>150 nm;pH0=2;[材料]=0.04 g, [H2O2]=0.32 mol/L | 100%(20 min) | 0.0918 min-1 (20 mg/L双酚A) | HO• | [ |
酞菁铁负载于钴尖晶石 | 10 mg/L罗丹明B | 材料+ H2O2 | T=25℃;[材料]=0.50 g/L,[H2O2]=50 mmol/L | 90%(120 min) | 0.02167 min-1 | O | [ |
酞菁钴(16.5%(质量)) 负载于改性多壁碳 纳米管 | 0.05 mmol/L 酸性红 | 材料+H2O2 | T=50℃;pH0=10;[材料] =0.1 g/L, [H2O2] =0.01 mol/L | >98%(60 min) | — | Co(Ⅳ)O | [ |
酞菁钴(14.9 μmol/g) 负载于纤维素 | 0.05 mmol/L 酸性红 | 材料+ H2O2 材料+PMS | T=50℃;pH0=6.7;[材料]=2.0 g/L, [PMS]=1.0 mmol/L,[H2O2]=1.0 mmol/L | 5%(35 min,H2O2体系);100%(35 min,PMS体系) | 0.0003 min-1(H2O2体系);0.0688 min-1(PMS体系) | PMS体系:SO | [ |
酞菁钴负载于改性 分子筛 | 5 mg/L普兰洛尔 | 材料+PMS | T=25℃;pH0=5.7±0.2;[材料]=0.1 g/L, [PMS]=0.2 g/L | 93.6%(30 min) | 0.0920 min-1 | 1O2、SO | [ |
磺酸基酞菁钴(2.24% (质量))负载于TiO2 | 40 mg/L 2,4- 二氯酚 | 材料+ H2O2+紫外光 | 光照:400 W,紫外光;pH0=5;[材料]=0.2 g/L,[H2O2]=0.03 mol/L | 94%(150 min) | — | [ |
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速率常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
Fe-N4活性中心(1.2%(质量)Fe), g-C3N4基底 | 20 mg/L磺胺 甲唑 | 材料+H2O2+可见光 | 光照:300 W,λ≥420 nm;pH0=3.0;[材料]=0.2 g/L, [H2O2]=20 mmol/L | 99.6%(40 min) | 0.0535 min-1 | HO•、O | [ |
Fe-N4活性中心,g-C3N4、 Bi2WO6基底 | 10 mg/L 四环素 | 材料+H2O2+可见光 | 光照:500 W,λ>420 nm;pH0=6.5;[材料]=0.4 g/L, [H2O2]=1 mmol/L | 93.9%(120 min) | 0.02342 min-1 | 1O2、O | [ |
Fe-N4活性中心(0.26%(atom)Fe), 氮掺杂碳基底 | 0.1 mmol/L 双酚A | 材料+PMS; 材料+H2O2+可见光 | T=30℃;pH0=6.7;[材料]=0.05 g/L,[PMS]=2 mmol/L | 100%(3 min) | 1.99 min-1 | SO | [ |
Fe-N4活性中心(7.0%(质量)Fe), 氮掺杂碳基底 | 0.1 mmol/L 4-氯酚 | 材料+PMS | T=20℃;[材料]=0.05 g/L,[PMS]=20 mmol/L | 100%(10 min) | 0.55 min-1 | 1O2 | [ |
Fe-N4活性中心(0.81%(质量)Fe), 氮掺杂碳基底 | 0.05 g/L 酸性橙 | 材料+PMS | T=25℃;pH0=9.1;[材料]=0.1 g/L,[PMS]=0.3 g/L | 100%(60 min) | 0.117 min-1 | 1O2、SO | [ |
Fe-N4活性中心(0.14%(质量)Fe), 氮掺杂碳基底 | 10 mg/L磺胺 甲唑 | 材料+PMS+可见光 | 光照:300 W,λ>420 nm;T=25℃;pH0=7.0; [材料]=0.05 g/L,[PMS]=0.5 mmol/L | 98.7%(6 min) | 0.602 min-1 | 1O2、HO•、O | [ |
Mn-N4活性中心,g-C3N4基底 | 2 mmol/L 草酸 | 材料+H2O2+O3 | pH0=3;[材料]=0.1 g/L,[H2O2]=0.39 mmol/L, [臭氧]=30 mg/L(流量100 ml/min) | 100%(45 min) | — | HO• | [ |
Co活性中心,硼、氮掺杂碳基底 | 50 mg/L四环素 | 材料+PMS | T=25℃;pH0=7;[材料]=0.6 g/L,[PMS]=0.6 g/L | 100%(30 min) | — | 1O2 | [ |
PPyC@Py-MIL(Fe) | 20 mg/L磺胺 甲唑 | 材料+H2O2+可见光 | 光照:300 W,λ>420 nm;T=25℃;pH0=6.5; [材料]=100 mg/L,[H2O2]=1 mmol/L | 污染物:95%(20 min); TOC:93%(60 min) | 0.1685 min-1 0.0434 min-1 | HO• | [ |
Fe3(HITP)2 (Fe 18.1%(质量)) | 20 mg/L 四环素 | 材料+H2O2+可见光 | 光照:300 W,λ>420 nm;T=室温;pH0=4.5; [材料]=0.4 g/L,[H2O2]=20 mmol/L | 96.7%(30 min) | 0.06 min-1 | [ | |
Pca-MIL88(Fe) (Fe 6.4%(atom)) | 50 mg/L 啶虫脒 | 材料+ H2O2+可见光 | 光照:300 W,λ>420 nm;T=25℃;[材料]=0.14 g/L, [H2O2]=0.006853 mol/L | 污染物:100%(60 min); TOC:97%(90 min) | 0.0706 min-1 | HO• | [ |
N-Fe-MOFs | 20 mg/L 甲基橙 | 材料+可见光 | 光照:500 W,可见光;[材料]=0.8 g/L | 97%(48 min) | — | 光生空穴、 光生电子 | [ |
Table 2 The performance of catalysts with enzyme-like active sites on the oxidative removal of contaminants
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速率常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
Fe-N4活性中心(1.2%(质量)Fe), g-C3N4基底 | 20 mg/L磺胺 甲唑 | 材料+H2O2+可见光 | 光照:300 W,λ≥420 nm;pH0=3.0;[材料]=0.2 g/L, [H2O2]=20 mmol/L | 99.6%(40 min) | 0.0535 min-1 | HO•、O | [ |
Fe-N4活性中心,g-C3N4、 Bi2WO6基底 | 10 mg/L 四环素 | 材料+H2O2+可见光 | 光照:500 W,λ>420 nm;pH0=6.5;[材料]=0.4 g/L, [H2O2]=1 mmol/L | 93.9%(120 min) | 0.02342 min-1 | 1O2、O | [ |
Fe-N4活性中心(0.26%(atom)Fe), 氮掺杂碳基底 | 0.1 mmol/L 双酚A | 材料+PMS; 材料+H2O2+可见光 | T=30℃;pH0=6.7;[材料]=0.05 g/L,[PMS]=2 mmol/L | 100%(3 min) | 1.99 min-1 | SO | [ |
Fe-N4活性中心(7.0%(质量)Fe), 氮掺杂碳基底 | 0.1 mmol/L 4-氯酚 | 材料+PMS | T=20℃;[材料]=0.05 g/L,[PMS]=20 mmol/L | 100%(10 min) | 0.55 min-1 | 1O2 | [ |
Fe-N4活性中心(0.81%(质量)Fe), 氮掺杂碳基底 | 0.05 g/L 酸性橙 | 材料+PMS | T=25℃;pH0=9.1;[材料]=0.1 g/L,[PMS]=0.3 g/L | 100%(60 min) | 0.117 min-1 | 1O2、SO | [ |
Fe-N4活性中心(0.14%(质量)Fe), 氮掺杂碳基底 | 10 mg/L磺胺 甲唑 | 材料+PMS+可见光 | 光照:300 W,λ>420 nm;T=25℃;pH0=7.0; [材料]=0.05 g/L,[PMS]=0.5 mmol/L | 98.7%(6 min) | 0.602 min-1 | 1O2、HO•、O | [ |
Mn-N4活性中心,g-C3N4基底 | 2 mmol/L 草酸 | 材料+H2O2+O3 | pH0=3;[材料]=0.1 g/L,[H2O2]=0.39 mmol/L, [臭氧]=30 mg/L(流量100 ml/min) | 100%(45 min) | — | HO• | [ |
Co活性中心,硼、氮掺杂碳基底 | 50 mg/L四环素 | 材料+PMS | T=25℃;pH0=7;[材料]=0.6 g/L,[PMS]=0.6 g/L | 100%(30 min) | — | 1O2 | [ |
PPyC@Py-MIL(Fe) | 20 mg/L磺胺 甲唑 | 材料+H2O2+可见光 | 光照:300 W,λ>420 nm;T=25℃;pH0=6.5; [材料]=100 mg/L,[H2O2]=1 mmol/L | 污染物:95%(20 min); TOC:93%(60 min) | 0.1685 min-1 0.0434 min-1 | HO• | [ |
Fe3(HITP)2 (Fe 18.1%(质量)) | 20 mg/L 四环素 | 材料+H2O2+可见光 | 光照:300 W,λ>420 nm;T=室温;pH0=4.5; [材料]=0.4 g/L,[H2O2]=20 mmol/L | 96.7%(30 min) | 0.06 min-1 | [ | |
Pca-MIL88(Fe) (Fe 6.4%(atom)) | 50 mg/L 啶虫脒 | 材料+ H2O2+可见光 | 光照:300 W,λ>420 nm;T=25℃;[材料]=0.14 g/L, [H2O2]=0.006853 mol/L | 污染物:100%(60 min); TOC:97%(90 min) | 0.0706 min-1 | HO• | [ |
N-Fe-MOFs | 20 mg/L 甲基橙 | 材料+可见光 | 光照:500 W,可见光;[材料]=0.8 g/L | 97%(48 min) | — | 光生空穴、 光生电子 | [ |
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速度常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
β-环糊精修饰的Fe3O4@TiO2 | 20 mg/L双酚A | 材料+紫外光 | 光照:400 W水银灯;[材料]=1 g/L | 99%(60 min),100%(105 min) | — | — | [ |
β-CD修饰的TiO2 | 10 mg/L亚甲基蓝 | 材料+可见光 | 光照:250 W,λ>420 nm;pH0=7.0; [材料]=1.0 g/L | 82%(10 h) | 0.16105 min-1 | O | [ |
羧甲基-β-环糊精改性的 自制钛纳米管 | 20 mg/L 2,4-二氯 苯酚 20 mg/L卡马西平 20 mg/L 双酚A 20 mg/L双酚S | 材料+紫外光 | 光照:10 W汞灯;pH0=4 [材料]=1 mg/ml | 97.5%(150 min) 96.1%(150 min) 96.0%(150 min) 99.5%(150 min) | 0.0232 min-1 0.0261 min-1 0.0208 min-1 0.0399 min-1 | O | [ |
MnO x 、SH-β-环糊精共修饰的 金纳米团簇锚定于空心 CdS球体 | 20 mg/L双酚A | 材料+可见光 | 光照:700 mW/cm2,λ>420 nm;T=25℃;pH0=6.8;[材料]=1 mg/ml | 93%(30 min) | 9.04×10-2 min-1 | HO• | [ |
β-环糊精修饰的MnFe2O4 | 40 mg/L 2,4-二氯 苯酚 | 材料+PMS | T=25℃;pH0=5.98;[材料]=0.5 g/L, [PMS]=2.0 mmol/L | 97%(60 min) | 0.0594 min-1 | 1O2、SO | [ |
La、Fe3O4共负载于β-环糊精 Ce、Fe3O4共负载于β-环糊精 | 50 mg/L阳离子蓝 | 材料+H2O2 | T=室温;pH0=4;[材料]=2 g/L, [H2O2]=30 mmol/L | 98%(20 min) 99%(10 min) | — | — | [ |
Fe3O4负载于β-环糊精 | 100 mg/L 4-氯苯 | 材料+H2O2 | T=20℃;pH0=3;[材料]=2 g/L, [H2O2]=30 mmol/L | 100%(90 min) | 0.0373 min-1 | HO• | [ |
β-环糊精、还原氧化石墨烯 共改性的Fe3O4 | 20 mg/L双酚A | 材料+H2O2 | T=25℃;pH0=4.85;[材料]=0.5 g/L, [H2O2]=10 mmol/L,[NH2OH]=4 mmol/L | 100%(30 min) | 0.15733 min-1 | HO• | [ |
β-环糊精改性的生物炭 | 20 mg/L双酚A | 材料+PDS | T=25℃;pH0=7.0;[材料]=0.4 g/L, [PDS]=0.5 mmol/L | 91.6%(30 min) | — | 非自由基机制,以电子传递机制为主 | [ |
以番茄皮为模板制备的CuO 负载于氧化石墨烯 | 100 mg/L对乙酰 氨基酚 | 材料+高温高压 | T=150℃;pH≈5.5(过程控制);P =1.0 MPa;[材料]=0.5 g/L | 污染物:96.2%(反应最后1 h); TOC:52.1%(反应最后1 h) | — | — | [ |
具有仿生分级结构的NiO 纳米线 | 8.30×10-4mol/L 亚甲基蓝 | 材料+紫外光 | 光照:30 mW/cm2,紫外光; [材料]=0.65 g/L | 97%(180 min) | 0.01907 min-1 | — | [ |
具有仿生减反射异质纳米结 结构的ZnO纳米棒包覆硅 | 罗丹明6G | 材料+光 | 光照:300 W氙灯 | 约100%(6 h) | — | — | [ |
TiO2负载于金纳米棒 | 5 mg/L罗丹明B | 材料+可见光 | 光照:300 W,100 mW/cm2,λ=420~780 nm;[材料]=1 g/L | 98.9%(90 min) | 4.98×10-2 min-1 | — | [ |
Table 3 The performance of biomorphic catalysts or materials with catalytic environments of natural materials on the oxidative removal of contaminants
仿生材料 | 目标污染物 | 反应体系 | 反应条件 | 去除率(时间) | 一级反应速度常数 | 活性氧化剂 | 文献 |
---|---|---|---|---|---|---|---|
β-环糊精修饰的Fe3O4@TiO2 | 20 mg/L双酚A | 材料+紫外光 | 光照:400 W水银灯;[材料]=1 g/L | 99%(60 min),100%(105 min) | — | — | [ |
β-CD修饰的TiO2 | 10 mg/L亚甲基蓝 | 材料+可见光 | 光照:250 W,λ>420 nm;pH0=7.0; [材料]=1.0 g/L | 82%(10 h) | 0.16105 min-1 | O | [ |
羧甲基-β-环糊精改性的 自制钛纳米管 | 20 mg/L 2,4-二氯 苯酚 20 mg/L卡马西平 20 mg/L 双酚A 20 mg/L双酚S | 材料+紫外光 | 光照:10 W汞灯;pH0=4 [材料]=1 mg/ml | 97.5%(150 min) 96.1%(150 min) 96.0%(150 min) 99.5%(150 min) | 0.0232 min-1 0.0261 min-1 0.0208 min-1 0.0399 min-1 | O | [ |
MnO x 、SH-β-环糊精共修饰的 金纳米团簇锚定于空心 CdS球体 | 20 mg/L双酚A | 材料+可见光 | 光照:700 mW/cm2,λ>420 nm;T=25℃;pH0=6.8;[材料]=1 mg/ml | 93%(30 min) | 9.04×10-2 min-1 | HO• | [ |
β-环糊精修饰的MnFe2O4 | 40 mg/L 2,4-二氯 苯酚 | 材料+PMS | T=25℃;pH0=5.98;[材料]=0.5 g/L, [PMS]=2.0 mmol/L | 97%(60 min) | 0.0594 min-1 | 1O2、SO | [ |
La、Fe3O4共负载于β-环糊精 Ce、Fe3O4共负载于β-环糊精 | 50 mg/L阳离子蓝 | 材料+H2O2 | T=室温;pH0=4;[材料]=2 g/L, [H2O2]=30 mmol/L | 98%(20 min) 99%(10 min) | — | — | [ |
Fe3O4负载于β-环糊精 | 100 mg/L 4-氯苯 | 材料+H2O2 | T=20℃;pH0=3;[材料]=2 g/L, [H2O2]=30 mmol/L | 100%(90 min) | 0.0373 min-1 | HO• | [ |
β-环糊精、还原氧化石墨烯 共改性的Fe3O4 | 20 mg/L双酚A | 材料+H2O2 | T=25℃;pH0=4.85;[材料]=0.5 g/L, [H2O2]=10 mmol/L,[NH2OH]=4 mmol/L | 100%(30 min) | 0.15733 min-1 | HO• | [ |
β-环糊精改性的生物炭 | 20 mg/L双酚A | 材料+PDS | T=25℃;pH0=7.0;[材料]=0.4 g/L, [PDS]=0.5 mmol/L | 91.6%(30 min) | — | 非自由基机制,以电子传递机制为主 | [ |
以番茄皮为模板制备的CuO 负载于氧化石墨烯 | 100 mg/L对乙酰 氨基酚 | 材料+高温高压 | T=150℃;pH≈5.5(过程控制);P =1.0 MPa;[材料]=0.5 g/L | 污染物:96.2%(反应最后1 h); TOC:52.1%(反应最后1 h) | — | — | [ |
具有仿生分级结构的NiO 纳米线 | 8.30×10-4mol/L 亚甲基蓝 | 材料+紫外光 | 光照:30 mW/cm2,紫外光; [材料]=0.65 g/L | 97%(180 min) | 0.01907 min-1 | — | [ |
具有仿生减反射异质纳米结 结构的ZnO纳米棒包覆硅 | 罗丹明6G | 材料+光 | 光照:300 W氙灯 | 约100%(6 h) | — | — | [ |
TiO2负载于金纳米棒 | 5 mg/L罗丹明B | 材料+可见光 | 光照:300 W,100 mW/cm2,λ=420~780 nm;[材料]=1 g/L | 98.9%(90 min) | 4.98×10-2 min-1 | — | [ |
仿生材料 | 目标污染物 | 主要 产物 | 反应体系 | 反应条件 | 去除率 (时间) | 一级反应 速率常数 | 文献 |
---|---|---|---|---|---|---|---|
Mo、双齿氮配体、Pd 共负载的碳材料 | 1 mmol/L NaClO4 | Cl- | 材料+H2(电 子供体) | T=20℃;pH=2.9~3.0(过程控制); [材料]=0.2 g/L,[H2]=0.1 MPa | 100% (60 min) | 0.0251 min-1 | [ |
Fe、Co、N共掺杂的 碳材料 | 10 mg/L Cr(Ⅵ) | Cr(Ⅲ) | 材料+甲酸 (电子供体) | T=25℃;pH0=1.74;[甲酸]=0.234 mol/L, [材料]=0.05 g/L | 100% (105 min) | 0.269 min-1 | [ |
Au负载于β-环糊精 | 5.64×10-4 mol/L 4-硝基苯酚 | 4-氨基 苯酚 | 材料+硼氢 化钠(电子 供体) | T=室温;[材料]=20 mg,[NaBH4]=0.495 mol/L | — | 0.1415 s-1 | [ |
β-环糊精修饰的MoS2、g-C3N4构成 的复合材料 | 10 mg/L Cr(Ⅵ) | Cr(Ⅲ) | 材料+光 | 光照:1000 mW,模拟太阳光;[材料]=0.4 g/L,[EDTA-2Na]=0.4 mmol/L | 76% (50 min) | — | [ |
Co(1.4%(质量))、 N、B共掺杂的 碳材料 | 50 mg/L氯霉素 | — | 三电极系统 | 电压:-0.9V vs AgCl;电极尺寸:1.0 cm×2.5 cm;对电极:铂丝,参比电极:Ag/AgCl, 工作电极:碳纤维纸(负载0.32 mg/cm2材料);电解液:0.067 mol/L Na2HPO4和KH2PO4;pH0=7 | 100% (3 h) | 1.6963 h-1 | [ |
Fe、N共掺杂的 碳材料 | 25 μmol/L三氯乙烯 | 乙烷、 乙烯 | 三电极系统 | 电压:-1.2 V vs AgCl;电极尺寸:2 cm×2 cm;对电极(阳极):Pt,参比电极:Ag/AgCl, 工作电极(阴极):玻碳电极(负载材料); 电解质:2 mmol/L Na2SO4;pH0=7.0 | 94% (8 h) | 0.36 h-1 | [ |
Fe、N、S共掺杂的碳 材料 | 100 mg N/L | N2、 | 三电极系统 | 电压:-0.67 V vs RHE;阳极:Ti/IrO2-Ru, 参比电极:Ag/AgCl,工作电极:材料; 电解质:100 mg N/L硝酸盐溶液、0.02 mol/L Na2SO4或NaCl;pH=6.7~7.8(过程控制) | — | 2.3×10-3 h-1 | [ |
Fe、N共掺杂的碳 材料 | 0.5 mol/L KNO3 | — | 三电极系统 | 电压:-0.85 V vs RHE;电流:100 mA/cm2;电极尺寸:1 cm×2 cm,浸泡尺寸:1 cm×1 cm;参比电极:饱和甘汞电极;对电极:铂箔;工作电极:铂碳电极(负载0.4 mg/cm2催化剂);电解质:0.1 mol/L K2SO4、0.5 mol/L KNO3 | — | — | [ |
Table 4 The performance of biomimetic materials on the reductive removal of contaminants
仿生材料 | 目标污染物 | 主要 产物 | 反应体系 | 反应条件 | 去除率 (时间) | 一级反应 速率常数 | 文献 |
---|---|---|---|---|---|---|---|
Mo、双齿氮配体、Pd 共负载的碳材料 | 1 mmol/L NaClO4 | Cl- | 材料+H2(电 子供体) | T=20℃;pH=2.9~3.0(过程控制); [材料]=0.2 g/L,[H2]=0.1 MPa | 100% (60 min) | 0.0251 min-1 | [ |
Fe、Co、N共掺杂的 碳材料 | 10 mg/L Cr(Ⅵ) | Cr(Ⅲ) | 材料+甲酸 (电子供体) | T=25℃;pH0=1.74;[甲酸]=0.234 mol/L, [材料]=0.05 g/L | 100% (105 min) | 0.269 min-1 | [ |
Au负载于β-环糊精 | 5.64×10-4 mol/L 4-硝基苯酚 | 4-氨基 苯酚 | 材料+硼氢 化钠(电子 供体) | T=室温;[材料]=20 mg,[NaBH4]=0.495 mol/L | — | 0.1415 s-1 | [ |
β-环糊精修饰的MoS2、g-C3N4构成 的复合材料 | 10 mg/L Cr(Ⅵ) | Cr(Ⅲ) | 材料+光 | 光照:1000 mW,模拟太阳光;[材料]=0.4 g/L,[EDTA-2Na]=0.4 mmol/L | 76% (50 min) | — | [ |
Co(1.4%(质量))、 N、B共掺杂的 碳材料 | 50 mg/L氯霉素 | — | 三电极系统 | 电压:-0.9V vs AgCl;电极尺寸:1.0 cm×2.5 cm;对电极:铂丝,参比电极:Ag/AgCl, 工作电极:碳纤维纸(负载0.32 mg/cm2材料);电解液:0.067 mol/L Na2HPO4和KH2PO4;pH0=7 | 100% (3 h) | 1.6963 h-1 | [ |
Fe、N共掺杂的 碳材料 | 25 μmol/L三氯乙烯 | 乙烷、 乙烯 | 三电极系统 | 电压:-1.2 V vs AgCl;电极尺寸:2 cm×2 cm;对电极(阳极):Pt,参比电极:Ag/AgCl, 工作电极(阴极):玻碳电极(负载材料); 电解质:2 mmol/L Na2SO4;pH0=7.0 | 94% (8 h) | 0.36 h-1 | [ |
Fe、N、S共掺杂的碳 材料 | 100 mg N/L | N2、 | 三电极系统 | 电压:-0.67 V vs RHE;阳极:Ti/IrO2-Ru, 参比电极:Ag/AgCl,工作电极:材料; 电解质:100 mg N/L硝酸盐溶液、0.02 mol/L Na2SO4或NaCl;pH=6.7~7.8(过程控制) | — | 2.3×10-3 h-1 | [ |
Fe、N共掺杂的碳 材料 | 0.5 mol/L KNO3 | — | 三电极系统 | 电压:-0.85 V vs RHE;电流:100 mA/cm2;电极尺寸:1 cm×2 cm,浸泡尺寸:1 cm×1 cm;参比电极:饱和甘汞电极;对电极:铂箔;工作电极:铂碳电极(负载0.4 mg/cm2催化剂);电解质:0.1 mol/L K2SO4、0.5 mol/L KNO3 | — | — | [ |
59 | Gao Y W, Zhu Y, Li T, et al. Unraveling the high-activity origin of single-atom iron catalysts for organic pollutant oxidation via peroxymonosulfate activation[J]. Environmental Science & Technology, 2021, 55(12): 8318-8328. |
60 | Zhang L S, Jiang X H, Zhong Z A, et al. Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100% selectivity[J]. Angewandte Chemie International Edition, 2021, 60(40): 21751-21755. |
61 | Zeng T, Li S Q, Hua J N, et al. Synergistically enhancing Fenton-like degradation of organics by in situ transformation from Fe3O4 microspheres to mesoporous Fe, N-dual doped carbon[J]. Science of the Total Environment, 2018, 645: 550-559. |
62 | Zhao X, Li X, Zhu Z, et al. Single-atom Co embedded in BCN matrix to achieve 100% conversion of peroxymonosulfate into singlet oxygen[J]. Applied Catalysis B: Environmental, 2022, 300: 120759. |
63 | He H, Wang Y X, Li J, et al. Confined conductive and light-adsorbed network in metal organic frameworks (MIL-88B(Fe)) with enhanced photo-Fenton catalytic activity for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2022, 427: 131962. |
64 | Xing D N, Cui Z H, Liu Y Y, et al. Two-dimensional π-d conjugated metal-organic framework Fe3(hexaiminotriphenylene)2 as a photo-Fenton like catalyst for highly efficient degradation of antibiotics[J]. Applied Catalysis B: Environmental, 2021, 290: 120029. |
65 | Wang Y X, Zhong Z, Muhammad Y, et al. Defect engineering of NH2-MIL-88B(Fe) using different monodentate ligands for enhancement of photo-Fenton catalytic performance of acetamiprid degradation[J]. Chemical Engineering Journal, 2020, 398: 125684. |
66 | Jin X H, Tang T, Tao X M, et al. Regulating N content to anchor Fe in Fe-MOFs: obtaining multiple active sites as efficient photocatalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104133. |
67 | Wang M L, Gao Q H, Zhang M X, et al. Boosting peroxymonosulfate activation via highly active and durable cobalt catalysts[J]. Journal of Materials Chemistry A, 2021, 9(4): 2308-2318. |
68 | Li X N, Huang X, Xi S B, et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis[J]. Journal of the American Chemical Society, 2018, 140(39): 12469-12475. |
69 | Chalasani R, Vasudevan S. Cyclodextrin-functionalized Fe3O4@TiO2: reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies[J]. ACS Nano, 2013, 7(5): 4093-4104. |
70 | Zhou Y, Lu J, Liu Q M, et al. A novel hollow-sphere cyclodextrin nanoreactor for the enhanced removal of bisphenol A under visible irradiation[J]. Journal of Hazardous Materials, 2020, 384: 121267. |
71 | 吴宏翔. 基于环糊精包合作用的聚氨酯功能型复合材料的制备与性能研究[D]. 上海: 华东理工大学, 2020. |
Wu H X. Synthesis and characterization of polyurethane functional composites based on cyclodextrin inclusive interactions[D]. Shanghai: East China University of Science and Technology, 2020. | |
72 | 刘琪铭. 环糊精改性二氧化钛材料对水中BPA等污染物的光催化去除[D]. 上海: 华东理工大学, 2020. |
Liu Q M. Photocatalytic removal of pollutants such as BPA by β-cyclodextrin modified titanium dioxide materials in wastewater[D]. Shanghai: East China University of Science and Technology, 2020. | |
73 | Zhou X J, Kong L H, Jing Z Y, et al. Facile synthesis of superparamagnetic β-CD-MnFe2O4 as a peroxymonosulfate activator for efficient removal of 2,4-dichlorophenol: structure, performance, and mechanism[J]. Journal of Hazardous Materials, 2020, 394: 122528. |
74 | Zhang Y M, Chen Z, Zhou L C, et al. Heterogeneous Fenton degradation of bisphenol A using Fe3O4@β-CD/rGO composite: synergistic effect, principle and way of degradation[J]. Environmental Pollution, 2019, 244: 93-101. |
75 | Wang M L, Fang G D, Liu P, et al. Fe3O4@β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol (4-CP)[J]. Applied Catalysis B: Environmental, 2016, 188: 113-122. |
76 | 王昕怡, 汤登科, 章耀鹏, 等. 稀土-Fe3O4-CD复合材料制备及降解阳离子染料的性能研究[J]. 化学研究与应用, 2021, 33(8): 1595-1601. |
Wang X Y, Tang D K, Zhang Y P, et al. Preparation of rare earth-Fe3O4-CD composites and their performances in cationic dyes degradation[J]. Chemical Research and Application, 2021, 33(8): 1595-1601. | |
77 | Pei X Y, Ren H Y, Liu G S, et al. Non-radical mechanism and toxicity analysis of β-cyclodextrin functionalized biochar catalyzing the degradation of bisphenol A and its analogs by peroxydisulfate[J]. Journal of Hazardous Materials, 2022, 424: 127254. |
78 | Palas B, Ersoz G, Atalay S. Biotemplated copper oxide catalysts over graphene oxide for acetaminophen removal: reaction kinetics analysis and cost estimation[J]. Chemical Engineering Science, 2021, 242: 116593. |
79 | Qi D P, Zheng L Y, Cao X B, et al. Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity[J]. Nanoscale, 2013, 5(24): 12383-12387. |
1 | Müller R, Oltmanns R H, Lingens F. Enzymatic dehalogenation of 4-chlorobenzoate by extracts from Arthrobacter sp. SU DSM 20407[J]. Biological Chemistry Hoppe-Seyler, 1988, 369(7): 567-571. |
2 | Zhu Q Q, Maeno S, Nishimoto R, et al. Oxidative degradation of pentabromophenol in the presence of humic substances catalyzed by a SBA-15 supported iron-porphyrin catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2014, 385: 31-37. |
3 | 黄飞, 伍明, 韩端壮, 等. 四氮杂卟啉铁(Ⅱ)催化降解水中有机污染物[J]. 中南民族大学学报(自然科学版), 2003, 22(3): 6-9. |
Huang F, Wu M, Han D Z, et al. Iron(Ⅱ) porphrazine catalyzing degradation of organic pollutants in water medium[J]. Journal of South-Central College for Nationalities (Natural Sciences), 2003, 22(3): 6-9. | |
4 | Sun Y, Zheng W S, Fu S, et al. Immobilization of iron phthalocyanine on 4-aminopyridine grafted polystyrene resin as a catalyst for peroxymonosulfate activation in eliminating tetracycline hydrochloride[J]. Chemical Engineering Journal, 2020, 391: 123611. |
5 | Shu J, Qiu Z L, Wei Q H, et al. Cobalt-porphyrin-platinum-functionalized reduced graphene oxide hybrid nanostructures: a novel peroxidase mimetic system for improved electrochemical immunoassay[J]. Scientific Reports, 2015, 5: 15113. |
6 | Cao X, Gao J, Yang Y F, et al. Synergistic degradation of chlorophenol pollutants by a photo-enzyme integrated catalyst[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107909. |
7 | 邓克俭. 催化分子氧降解水中有机污染物的研究[D]. 武汉: 武汉大学, 2004. |
Deng K J. Study on catalyzing dioxygen degradation of organic pollutants in aqueous solutions[D]. Wuhan: Wuhan University, 2004. | |
8 | 熊键. 蒙脱石固定高铁血红素合成仿生材料催化降解2,4,6-三氯酚研究[D]. 南京: 南京大学, 2014. |
Xiong J. Hemin immobilized in montmorillonite interlayer as a biomimetic catalyst for 2,4,6-trichlorophenol degradation[D]. Nanjing: Nanjing University, 2014. | |
9 | 罗智明, 欧炳辉, 郭海敏, 等. 壳聚糖固载金属卟啉磁性微球的合成、表征及对甲基橙废水的催化研究[J]. 广东药学院学报, 2013, 29(4): 370-373. |
80 | Yao Y J, Yin H Y, Zhang Y Y, et al. Fe, Cu-coordinated ZIF-derived bimetal encapsulated N-doped carbon nanotube for efficient remediation of various aqueous pollutants[J]. Chemical Engineering Journal, 2021, 426: 131801. |
81 | Ren C X, Yang P, Sun J N, et al. A bioinspired molybdenum catalyst for aqueous perchlorate reduction[J]. Journal of the American Chemical Society, 2021, 143(21): 7891-7896. |
82 | 胡兵. 超分子共价有机聚合物/金属纳米粒子复合材料的合成及其催化性质研究[D]. 赣州: 赣南师范大学, 2021. |
Hu B. Synthesis and catalytic performance of supermolecule-based covalent organic polymers/metal nanoparticle composites[D]. Ganzhou: Gannan Normal University, 2021. | |
83 | Wu Z S, He X F, Xue Y T, et al. Cyclodextrins grafted MoS2/g-C3N4 as high-performance photocatalysts for the removal of glyphosate and Cr(Ⅵ) from simulated agricultural runoff[J]. Chemical Engineering Journal, 2020, 399: 125747. |
84 | Min Y, Zhou X, Chen J J, et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design[J]. Nature Communications, 2021, 12(1): 303. |
85 | Deng J, Hu X M, Gao E L, et al. Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon[J]. Journal of Hazardous Materials, 2021, 419: 126458. |
86 | Li J C, Li M, An N, et al. Atomically dispersed Fe atoms anchored on S and N-codoped carbon for efficient electrochemical denitrification[J]. Proceedings of the National Academy of Sciences, 2021, 118(33): e2105628118. |
87 | Wu Z Y, Karamad M, Yong X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst[J]. Nature Communications, 2021, 12(1): 2870. |
88 | Du X D, Yi X H, Wang P, et al. Enhanced photocatalytic Cr(Ⅵ) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions[J]. Chinese Journal of Catalysis, 2019, 40(1): 70-79. |
89 | Zhang P, Sun D R, Cho A, et al. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis[J]. Nature Communications, 2019, 10(1): 940. |
90 | Wu Y, Jiao L, Luo X, et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity[J]. Small, 2019, 15(43): e1903108. |
9 | Luo Z M, Ou B H, Guo H M, et al. Magnetic chitosan-supported metalloporphyrin nanospheres: synthesis,characterization and catalysis for methyl orange wastewater[J]. Journal of Guangdong Pharmaceutical University, 2013, 29(4): 370-373. |
10 | Li Q, Wang X P, Xiong X Q, et al. Graphene-supported biomimetic catalysts with synergistic effect of adsorption and degradation for efficient dye capture and removal[J]. Chinese Chemical Letters, 2020, 31(1): 239-243. |
11 | Cocco G, Cocco A, Sollai F, et al. Bioinspired versus enzymatic oxidation of some homologous thionine dyes in the presence of immobilized metalloporphyrin catalysts and ligninolytic enzymes[J]. International Journal of Molecular Sciences, 2017, 18(12): 2553. |
12 | Burris D R, Delcomyn C A, Smith M H, et al. Reductive dechlorination of tetrachloroethylene and trichloroethylene catalyzed by vitamin B12 in homogeneous and heterogeneous systems[J]. Environmental Science & Technology, 1996, 30(10): 3047-3052. |
13 | He W Z, Zhu Y, Zeng G M, et al. Efficient removal of perfluorooctanoic acid by persulfate advanced oxidative degradation: inherent roles of iron-porphyrin and persistent free radicals[J]. Chemical Engineering Journal, 2020, 392: 123640. |
14 | Christoforidis K C, Louloudi M, Deligiannakis Y. Complete dechlorination of pentachlorophenol by a heterogeneous SiO2-Fe-porphyrin catalyst[J]. Applied Catalysis B: Environmental, 2010, 95(3/4): 297-302. |
15 | Li W X, He X F, Ge R Y, et al. Cobalt porphyrin (CoTCPP) advanced visible light response of g-C3N4 nanosheets[J]. Sustainable Materials and Technologies, 2019, 22: e00114. |
16 | 解婷婷, 迟莉娜, 刘瑞婷, 等. 金属有机框架固定化酶及其在环境中的应用[J]. 化工进展, 2019, 38(6): 2889-2897 |
Xie T T, Chi L N, Liu R T, et al. Immobilization of enzymes on metal-organic frameworks and its application in environmental fields[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2889-2897. | |
17 | An J, Li G L, Zhang Y F, et al. Recent advances in enzyme-nanostructure biocatalysts with enhanced activity[J]. Catalysts, 2020, 10(3): 338. |
18 | Ran F P, Zou Y L, Xu Y X, et al. Fe3O4@MoS2@PEI-facilitated enzyme tethering for efficient removal of persistent organic pollutants in water[J]. Chemical Engineering Journal, 2019, 375: 121947. |
19 | 赵睿南, 胡满成, 李淑妮, 等. 基于金属有机骨架的固定化氯过氧化物酶的制备和性能评价[J]. 化学学报, 2017, 75(3): 293-299 |
Zhao R N, Hu M C, Li S N, et al. Immobilization of chloroperoxidase in metal organic framework and its catalytic performance[J]. Acta Chimica Sinica, 2017, 75(3): 293-299. | |
20 | Liao F S, Lo W S, Hsu Y S, et al. Shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach[J]. Journal of the American Chemical Society 2017, 139(19): 6530-6533. |
21 | Dong M J, Zhao M, Ou S, et al. A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules[J]. Angewandte Chemie International Edition, 2014, 53(6): 1575-1579. |
22 | Li M, Li Z L, Yu X L, et al. FeN4-doped carbon nanotubes derived from metal organic frameworks for effective degradation of organic dyes by peroxymonosulfate: impacts of FeN4 spin states[J]. Chemical Engineering Journal, 2022, 431: 133339. |
23 | Liu S A, Liu D, Sun Y L, et al. Enzyme-mimicking single-atom FeN4 sites for enhanced photo-Fenton-like reactions[J]. Applied Catalysis B: Environmental, 2022, 310: 121327. |
24 | 刘幸, 韩勇, 张亚如, 等. 介孔金属-有机框架(MesoMOFs)的合成研究进展[J]. 合成化学, 2019, 27(7): 568-575. |
Liu X, Han Y, Zhang Y R, et al. Research progress on synthesis of mesoporous metal-organic frameworks(MesoMOFs)[J]. Chinese Journal of Synthetic Chemistry, 2019, 27(7): 568-575. | |
25 | 武凯莉, 康永锋. 金属有机框架材料的可控合成概述[J]. 化工新型材料, 2022, 50(3): 226-229, 235. |
Wu K L, Kang Y F. Overview of controllable synthesis of metal-organic framework materials[J]. New Chemical Materials, 2022, 50(3): 226-229, 235. | |
26 | Chen G S, Jiang M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly[J]. Chemical Society Reviews, 2011, 40(5): 2254-2266. |
27 | 沈海民, 纪红兵, 武宏科, 等. β-环糊精的固载及其应用最新研究进展[J]. 有机化学, 2014, 34(8): 1549-1572. |
Shen H M, Ji H B, Wu H K, et al. Recent advances in the immobilization of β-cyclodextrin and their application[J]. Chinese Journal of Organic Chemistry, 2014, 34(8): 1549-1572. | |
28 | Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers[J]. Chemical Society Reviews, 2009, 38(4): 875-882. |
29 | Kumar A, Sharma G, Naushad M, et al. SPION/β-cyclodextrin core-shell nanostructures for oil spill remediation and organic pollutant removal from waste water[J]. Chemical Engineering Journal, 2015, 280: 175-187. |
30 | Jiang X, Sun C, Guo Y, et al. Peroxidase-like activity of apoferritin paired gold clusters for glucose detection[J]. Biosensors and Bioelectronics, 2015, 64: 165-170. |
31 | Gu Z N, Zhou J, An X Q, et al. A dual-biomimetic photocatalytic fuel cell for efficient electricity generation from degradation of refractory organic pollutants[J]. Applied Catalysis B: Environmental, 2021, 298: 120501. |
32 | Sun H, Zeng S, He Q R, et al. Spiky TiO2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity[J]. Dalton Transactions, 2017, 46(12): 3887-3894. |
33 | 潘超, 董丽, 马玲, 等. 仿生分级结构NiO纳米线/纳米纤维的可控制备及光催化性能[J]. 高等学校化学学报, 2013, 34(11): 2623-2628. |
Pan C, Dong L, Ma L, et al. Preparation of bio-inspired NiO nanowires/nanofibers hierarchical structures and their photocatalytic properties[J]. Chemical Journal of Chinese Universities, 2013, 34(11): 2623-2628. | |
34 | Zhu Z X, Lu W Y, Li N, et al. Pyridyl-containing polymer blends stabilized iron phthalocyanine to degrade sulfonamides by enzyme-like process[J]. Chemical Engineering Journal, 2017, 321: 58-66. |
35 | Sun Y, Feng X L, Fu S. Application of response surface methodology for optimization of oxytetracycline hydrochloride degradation using hydrogen peroxide/polystyrene-supported iron phthalocyanine oxidation process[J]. Water Science and Technology, 2020, 81(6): 1308-1318. |
36 | Li N, Lu P T, He C X, et al. Catalytic degradation of sulfaquinoxalinum by polyester/poly-4-vinylpyridine nanofibers-supported iron phthalocyanine[J]. Environmental Science and Pollution Research, 2018, 25(6): 5902-5910. |
37 | Wang Y, Fang Y, Lu W Y, et al. Oxidative removal of sulfa antibiotics by introduction of activated carbon fiber to enhance the catalytic activity of iron phthalocyanine[J]. Microporous and Mesoporous Materials, 2018, 261: 98-104. |
38 | Wang Q L, Li H Y, Yang J H, et al. Iron phthalocyanine-graphene donor-acceptor hybrids for visible-light-assisted degradation of phenol in the presence of H2O2 [J]. Applied Catalysis B: Environmental, 2016, 192: 182-192. |
39 | 高冠道, 张爱勇, 张萌, 等. 新型仿生光催化剂HMS-FePcS催化降解孔雀绿的反应因素及动力学[J]. 催化学报, 2008, 29(4): 397-402. |
Gao G D, Zhang A Y, Zhang M, et al. Reaction factors and kinetics of degradation of malachite green with novel biomimetic photocatalyst HMS-FePcS[J]. Chinese Journal of Catalysis, 2008, 29(4): 397-402. | |
40 | 张钰,张瑞丰. 新型大孔仿生光催化剂Fe(Ⅲ)-taPc/SiO2的制备及其光催化降解性能[J]. 功能材料, 2013, 44(7): 1001-1005 |
Zhang Y, Zhang R F. Preparation and photocatalytic degradation properties of novel biommimetic photocatalyst Fe(Ⅲ)-taPc/SiO2 [J]. Journal of Functional Materials, 2013, 44(7): 1001-1005. | |
41 | Qian H L, Hou Q D, Yu G J, et al. Enhanced removal of dye from wastewater by Fenton process activated by core-shell NiCo2O4@FePc catalyst[J]. Journal of Cleaner Production, 2020, 273: 123028. |
42 | Guo Z, Chen B, Mu J, et al. Iron phthalocyanine/TiO2 nanofiber heterostructures with enhanced visible photocatalytic activity assisted with H2O2 [J]. Journal of Hazardous Materials, 2012, 219/220: 156-163. |
43 | Chu C Y, Li N, Xu T F, et al. Polymeric iron phthalocyanine/g-C3N4 composite catalyst by mechanical force enhanced stripping and recombination for solar-induced contaminant degradation and CO2 reduction[J]. Applied Surface Science, 2022, 592: 153308. |
44 | Chen X, Lu W Y, Xu T F, et al. Visible-light-assisted generation of high-valent iron-oxo species anchored axially on g-C3N4 for efficient degradation of organic pollutants[J]. Chemical Engineering Journal, 2017, 328: 853-861. |
45 | Norman M, Zoltowska-Aksamitowska S, Zgola-Grzeskowiak A, et al. Iron(Ⅲ) phthalocyanine supported on a spongin scaffold as an advanced photocatalyst in a highly efficient removal process of halophenols and bisphenol A[J]. Journal of Hazardous Materials, 2018, 347: 78-88. |
46 | Huang Z F, Yao Y, Lu J, et al. The consortium of heterogeneous cobalt phthalocyanine catalyst and bicarbonate ion as a novel platform for contaminants elimination based on peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2016, 301: 214-221. |
47 | Wang Z D, Zhu Z X, Wang G Q, et al. Iron (Ⅱ) phthalocyanine loaded tourmaline efficiently activates PMS to degrade pharmaceutical contaminants under solar light[J]. Environmental Technology, DOI: 10.1080/09593330.2022.2064236 . |
48 | Han Z B, Han X, Zhao X M, et al. Iron phthalocyanine supported on amidoximated PAN fiber as effective catalyst for controllable hydrogen peroxide activation in oxidizing organic dyes[J]. Journal of Hazardous Materials, 2016, 320: 27-35. |
91 | Wu Y, Wu J B, Jiao L, et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing[J]. Analytical Chemistry, 2020, 92(4): 3373-3379. |
92 | Wang X, Lu X B, Wu L D, et al. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A[J]. Biosensors and Bioelectronics, 2015, 65: 295-301. |
93 | Zhang T, Wang L, Gao C W, et al. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol[J]. Nanotechnology, 2018, 29(7): 074003. |
94 | Zhao R, Wu X X, Gao Y X, et al. A unique bimetallic MOF derived carbon-MWCNTs hybrid structure for selective electrochemical determination of lead ion in aqueous solution[J]. Microchemical Journal, 2020, 158: 105271. |
95 | Li P H, Yang M, Li Y X, et al. Ultra-sensitive and selective detection of arsenic(Ⅲ) via electroanalysis over cobalt single-atom catalysts[J]. Analytical Chemistry, 2020, 92(8): 6128-6135. |
96 | Zong L P, Li J J, Shu G F, et al. Rational design of a highly dispersed Fe-N-C nanosheet with 1,10-phenanthroline-2,9-dicarboxylic acid as a preorganized ligand: boosted electrochemiluminescence detection of tetracycline[J]. Analytical Chemistry, 2022, 94(2): 1325-1332. |
97 | Zhang Y, Liu Z Y, Wang Y G, et al. Directly assembled electrochemical sensor by combining self-supported CoN nanoarray platform grown on carbon cloth with molecularly imprinted polymers for the detection of Tylosin[J]. Journal of Hazardous Materials, 2020, 398: 122778. |
49 | Ni D J, Zhang J F, Wang X Y, et al. Hydroxyl radical-dominated catalytic oxidation in neutral condition by axially coordinated iron phthalocyanine on mercapto-functionalized carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2017, 56(11): 2899-2907. |
50 | Li N, Wang Y, Wu C R, et al. Bioinspired catalytic generation of high-valent cobalt-oxo species by the axially coordinated CoPc on pyridine-functionalized MWCNTs for the elimination of organic contaminants[J]. Applied Surface Science, 2018, 434: 1112-1121. |
51 | Wu M H, Shi J, Ding C, et al. Binuclear cobalt phthalocyanine supported on manganese octahedral molecular sieve: high-efficiency catalyzer of peroxymonosulfate decomposition for degrading propranolol[J]. Science of the Total Environment, 2019, 686: 97-106. |
52 | Ebrahimian A, Zanjanchi M A, Noei H, et al. TiO2 nanoparticles containing sulphonated cobalt phthalocyanine: preparation, characterization and photocatalytic performance[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 484-494. |
53 | Li G L, Ma P, He Y, et al. Enzyme-nanowire mesocrystal hybrid materials with an extremely high biocatalytic activity[J]. Nano Letters, 2018, 18(9): 5919-5926. |
54 | Li N, Lu W Y, Pei K M, et al. Formation of high-valent cobalt-oxo phthalocyanine species in a cellulose matrix for eliminating organic pollutants[J]. Applied Catalysis B: Environmental, 2015, 163: 105-112. |
55 | Miao J, Zhu Y, Lang J Y, et al. Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway[J]. ACS Catalysis, 2021, 11(15): 9569-9577. |
56 | Liu C H, Dai H L, Tan C Q, et al. Photo-Fenton degradation of tetracycline over Z-scheme Fe-g-C3N4/Bi2WO6 heterojunctions: mechanism insight, degradation pathways and DFT calculation[J]. Applied Catalysis B: Environmental, 2022, 310: 121326. |
57 | Zhao G, Li W C, Zhang H Y, et al. Single atom Fe-dispersed graphitic carbon nitride (g-C3N4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2022, 430: 132937. |
58 | Guo Z, Xie Y B, Xiao J D, et al. Single-atom Mn-N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution[J]. Journal of the American Chemical Society, 2019, 141(30): 12005-12010. |
[1] | Runmiao GAO, Mengjie SONG, Enyuan GAO, Long ZHANG, Xuan ZHANG, Keke SHAO, Zekang ZHEN, Zhengyong JIANG. Review on greenhouse gas reduction related to refrigerants in cold chain [J]. CIESC Journal, 2023, 74(S1): 1-7. |
[2] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[3] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[6] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[7] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[8] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[9] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[10] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[11] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[12] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[13] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[14] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[15] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 239
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||