CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1102-1112.DOI: 10.11949/0438-1157.20221442
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Xinlong YAN1(), Zhigang HUANG1, Qingxun HU2, Xin ZHANG1, Xiaoyan HU1
Received:
2022-11-07
Revised:
2023-02-20
Online:
2023-04-19
Published:
2023-03-05
Contact:
Xinlong YAN
通讯作者:
闫新龙
作者简介:
闫新龙(1983—),男,博士,副教授,yanxl@cumt.edu.cn
基金资助:
CLC Number:
Xinlong YAN, Zhigang HUANG, Qingxun HU, Xin ZHANG, Xiaoyan HU. Catalytic nitrophenol degradation via peroxymonosulfate activation over Cu/Co doped porous carbon[J]. CIESC Journal, 2023, 74(3): 1102-1112.
闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112.
Add to citation manager EndNote|Ris|BibTeX
1 | Raghunath D, Venkata S S, Hugues K P, et al. Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes[J]. Applied Catalysis B: Environmental, 2019, 244: 546-558. |
2 | Zhu M, Zhang L, Liu S, et al. Degradation of 4-nitrophenol by electrocatalysis and advanced oxidation processes using Co3O4@C anode coupled with simultaneous CO2 reduction via SnO2/CC cathode[J]. Chinese Chemical Letters, 2020, 31(7): 1961-1965. |
3 | Duan P, Liu X, Liu B, et al. Effect of phosphate on peroxymonosulfate activation: accelerating generation of sulfate radical and underlying mechanism[J]. Applied Catalysis B: Environmental, 2021, 298: 120532. |
4 | 韩雪, 高生旺, 王国英, 等. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753. |
Han X, Gao S W, Wang G Y, et al. Research of enhanced carbon nanotubes activated peroxymonosulfate by cerium doping[J]. CIESC Journal, 2022, 73(4): 1743-1753. | |
5 | Giannakis S, Andrew Lin K Y, Ghanbari F, et al. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406: 127083. |
6 | 黄仕元, 邓简, 袁瀚钦, 等. 钴强化铁磁体活化过一硫酸盐的实验研究[J]. 化工学报, 2022, 73(7): 3045-3056. |
Huang S Y, Deng J, Yuan H Q, et al. Experimental study on activation of peroxymonosulfate by cobalt-enhanced ferromagnet[J]. CIESC Journal, 2022, 73(7): 3045-3056. | |
7 | Peng L, Shang Y, Gao B, et al. Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: role of pyridinic N-Co binding and high tolerance of chloride[J]. Applied Catalysis B: Environmental, 2021, 282: 119484. |
8 | Li Y, Yan X, Hu X, et al. Trace pyrolyzed ZIF-67 loaded activated carbon pellets for enhanced adsorption and catalytic degradation of Rhodamine B in water[J]. Chemical Engineering Journal, 2019, 375: 122003. |
9 | Do H H, Quyet V L, Mahider A T, et al. Metal-organic framework-derived MoS x composites as efficient electrocatalysts for hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2021, 852: 156952. |
10 | Zhang X, Yan X, Hu X, et al. Efficient removal of organic pollutants by a Co/N/S-doped yolk-shell carbon catalyst via peroxymonosulfate activation[J]. Journal of Hazardous Materials, 2022, 421: 126726. |
11 | Li H, Yao Y, Zhang J, et al. Degradation of phenanthrene by peroxymonosulfate activated with bimetallic metal-organic frameworks: kinetics, mechanisms, and degradation products[J]. Chemical Engineering Journal, 2020, 397: 125401. |
12 | Zhang X H, Chuah C Y, Dong P P, et al. Hierarchically porous Co-MOF-74 hollow nanorods for enhanced dynamic CO2 separation[J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43316-43322. |
13 | Yao Y J, Xu C, Qin J C, et al. Synthesis of magnetic cobalt nanoparticles anchored on graphene nanosheets and catalytic decomposition of orange Ⅱ[J]. Industrial & Engineering Chemistry Research, 2013, 52(49): 17341-17350. |
14 | Guo W W, Bi J H, Zhu Q G, et al. Highly selective CO2 electroreduction to CO on Cu-Co bimetallic catalysts[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12561-12567. |
15 | Liu Y, Chen X Y, Yang Y L, et al. Activation of persulfate with metal-organic framework-derived nitrogen-doped porous Co@C nanoboxes for highly efficient p-chloroaniline removal[J]. Chemical Engineering Journal, 2019, 358: 408-418. |
16 | Wang K F, Chen Y J, Tian R, et al. Porous Co-C core-shell nanocomposites derived from Co-MOF-74 with enhanced electromagnetic wave absorption performance[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11333-11342. |
17 | Wang X, Song K, Yang R, et al. Facile construction of sandwich-like Co3O4/CNTs complex for high-performance asymmetric supercapacitors[J]. ChemistrySelect, 2019, 4(13): 3878-3883. |
18 | Chen C, Liu L, Li Y, et al. Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate[J]. Chemical Engineering Journal, 2020, 384: 123257. |
19 | Yin J, Li Y X, Lv F, et al. NiO/CoN porous nanowires as efficient bifunctional catalysts for Zn-air batteries[J]. ACS Nano, 2017, 11(2): 2275-2283. |
20 | Lian H Y, Hu M, Liu C H, et al. Highly biocompatible, hollow coordination polymer nanoparticles as cisplatin carriers for efficient intracellular drug delivery[J]. Chemical Communications, 2012, 48(42): 5151-5153. |
21 | Li X H, Guo W L, Liu Z H, et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation[J]. Applied Surface Science, 2016, 369: 130-136. |
22 | Chen C, Liu L, Li W, et al. Reutilization of waste self-heating pad by loading cobalt: a magnetic and green peroxymonosulfate activator for naphthalene degradation[J]. Journal of Hazardous Materials, 2022, 439: 129572. |
23 | Li W, Li Y X, Zhang D Y, et al. CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate[J]. Journal of Hazardous Materials, 2020, 381: 121209. |
24 | Zhang T, Zhu H B, Croué J P, et al. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism[J]. Environmental Science & Technology, 2013, 47(6): 2784-2791. |
25 | Bennedsen L R, Muff J, Søgaard E G. Influence of chloride and carbonates on the reactivity of activated persulfate[J]. Chemosphere, 2012, 86(11): 1092-1097. |
26 | Li H X, Wan J Q, Ma Y W, et al. Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron[J]. RSC Advances, 2015, 5(121): 99935-99943. |
27 | Xu X R, Li S X, Li X Y, et al. Degradation of n-butyl benzyl phthalate using TiO2/UV[J]. Journal of Hazardous Materials, 2009, 164(2/3): 527-532. |
28 | Li C X, Chen C B, Wang Y J, et al. Insights on the pH-dependent roles of peroxymonosulfate and chlorine ions in phenol oxidative transformation[J]. Chemical Engineering Journal, 2019, 362: 570-575. |
29 | Lee H J, Kim H E, Kim M S, et al. Inactivation of bacterial planktonic cells and biofilms by Cu(Ⅱ)-activated peroxymonosulfate in the presence of chloride ion[J]. Chemical Engineering Journal, 2020, 380: 122468. |
30 | Li X M, Yan X L, H X Y et al. Enhanced adsorption and catalytic peroxymonosulfate activation by metal-free N-doped carbon hollow spheres for water depollution[J]. Journal of Colloid and Interface Science, 2021, 591: 184-192. |
31 | Li W, Li S, Tang Y, et al. Highly efficient activation of peroxymonosulfate by cobalt sulfide hollow nanospheres for fast ciprofloxacin degradation[J]. Journal of Hazardous Materials, 2020, 389: 121856. |
32 | Zhou P, Zhang J, Zhang Y L, et al. Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper[J]. Journal of Hazardous Materials, 2018, 344: 1209-1219. |
33 | Wang Y T, He L Y, Li Y S, et al. Ag NPs supported on the magnetic Al-MOF/PDA as nanocatalyst for the removal of organic pollutants in water[J]. Journal of Alloys and Compounds, 2020, 828: 154340. |
34 | Liang S, Niu H Y, Guo H, et al. Incorporating Fe3C into B, N co-doped CNTs: non-radical-dominated peroxymonosulfate catalytic activation mechanism[J]. Chemical Engineering Journal, 2021, 405: 126686. |
[1] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[5] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[8] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[9] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[10] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[11] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[12] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[13] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||