CIESC Journal ›› 2023, Vol. 74 ›› Issue (3): 1286-1293.DOI: 10.11949/0438-1157.20221344
• Energy and environmental engineering • Previous Articles Next Articles
Zhiguang QIAN1(), Yue FAN1, Shixue WANG1,2, Like YUE1, Jinshan WANG1, Yu ZHU1,2()
Received:
2022-10-11
Revised:
2023-01-11
Online:
2023-04-19
Published:
2023-03-05
Contact:
Yu ZHU
钱志广1(), 樊越1, 王世学1,2, 岳利可1, 王金山1, 朱禹1,2()
通讯作者:
朱禹
作者简介:
钱志广(1996—),男,硕士研究生,qianzg@tju.edu.cn
基金资助:
CLC Number:
Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC[J]. CIESC Journal, 2023, 74(3): 1286-1293.
钱志广, 樊越, 王世学, 岳利可, 王金山, 朱禹. 吹扫条件对PEMFC阻抗弛豫现象和低温启动的影响[J]. 化工学报, 2023, 74(3): 1286-1293.
Add to citation manager EndNote|Ris|BibTeX
运行阶段 | 参数 | 数值 |
---|---|---|
稳态运行阶段 | 运行温度/℃ | 60 |
氢气化学计量比 | 1.5 | |
氢气相对湿度/% | 100 | |
空气化学计量比 | 2.5 | |
空气相对湿度/% | 70 | |
电流密度/(A/cm2) | 1.2 | |
运行时间/min | 30 | |
冷却阶段 | 冷却温度/℃ | -10 |
冷却时间/h | 3 | |
冷启动阶段 | 冷启动温度/℃ | -10 |
氢气流量/(ml/min) | 95 | |
氢气相对湿度 | 0 | |
空气流量/(ml/min) | 226 | |
空气相对湿度 | 0 | |
电流密度/(A/cm2) | 0.04 |
Table 1 Experimental conditions at each stage
运行阶段 | 参数 | 数值 |
---|---|---|
稳态运行阶段 | 运行温度/℃ | 60 |
氢气化学计量比 | 1.5 | |
氢气相对湿度/% | 100 | |
空气化学计量比 | 2.5 | |
空气相对湿度/% | 70 | |
电流密度/(A/cm2) | 1.2 | |
运行时间/min | 30 | |
冷却阶段 | 冷却温度/℃ | -10 |
冷却时间/h | 3 | |
冷启动阶段 | 冷启动温度/℃ | -10 |
氢气流量/(ml/min) | 95 | |
氢气相对湿度 | 0 | |
空气流量/(ml/min) | 226 | |
空气相对湿度 | 0 | |
电流密度/(A/cm2) | 0.04 |
参数 | 数值 |
---|---|
电池温度/℃ | 20/40/60 |
气体流量/(ml/min) | 1000/1500/2000 |
吹扫时间/s | 200 |
吹扫气体 | 干燥N2 |
Table 2 Purging conditions for impedance relaxation experiment
参数 | 数值 |
---|---|
电池温度/℃ | 20/40/60 |
气体流量/(ml/min) | 1000/1500/2000 |
吹扫时间/s | 200 |
吹扫气体 | 干燥N2 |
1 | Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007. |
2 | Yang Y G, Zhou X Y, Li B, et al. Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: material and structure designs of microporous layer[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4259-4282. |
3 | Wang Y L, Wang X A, Fan Y Z, et al. Numerical investigation of tapered flow field configurations for enhanced polymer electrolyte membrane fuel cell performance[J]. Applied Energy, 2022, 306: 118021. |
4 | Wang Y, Wang X D, Qin Y Z, et al. Three-dimensional numerical study of a cathode gas diffusion layer with a through/in plane synergetic gradient porosity distribution for PEM fuel cells[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122661. |
5 | 魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154. |
Wei L, Liao Z H, Jiang F M. Numerical study on cold start of PEMFC with coolant circulation[J]. CIESC Journal, 2019, 70(S2): 146-154. | |
6 | 宇高义郎, 许竞莹, 王国卓, 等. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282. |
Utaka Y, Xu J Y, Wang G Z, et al. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells[J]. CIESC Journal, 2021, 72(4): 2276-2282. | |
7 | Wang G Z, Utaka Y, Wang S X. Planar-distributed wettability of microporous layer of polymer electrolyte fuel cell to improve cold start performance[J]. Journal of Power Sources, 2019, 437: 226930. |
8 | Yan Q G, Toghiani H, Lee Y W, et al. Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components[J]. Journal of Power Sources, 2006, 160(2): 1242-1250. |
9 | Ozden A, Shahgaldi S, Zhao J, et al. Degradations in porous components of a proton exchange membrane fuel cell under freeze-thaw cycles: morphology and microstructure effects[J]. International Journal of Hydrogen Energy, 2020, 45(5): 3618-3631. |
10 | Cho E, Ko J J, Ha H Y, et al. Characteristics of the PEMFC repetitively brought to temperatures below 0℃[J]. Journal of The Electrochemical Society, 2003, 150(12): A1667. |
11 | McDonald R C, Mittelsteadt C K, Thompson E L. Effects of deep temperature cycling on Nafion® 112 membranes and membrane electrode assemblies[J]. Fuel Cells, 2004, 4(3): 208-213. |
12 | Oszcipok M, Riemann D, Kronenwett U, et al. Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells[J]. Journal of Power Sources, 2005, 145(2): 407-415. |
13 | Amamou A A, Kelouwani S, Boulon L, et al. A comprehensive review of solutions and strategies for cold start of automotive proton exchange membrane fuel cells[J]. IEEE Access, 2016, 4: 4989-5002. |
14 | Wan Z M, Chang H W, Shu S M, et al. A review on cold start of proton exchange membrane fuel cells[J]. Energies, 2014, 7(5): 3179-3203. |
15 | Montaner Ríos G, Schirmer J, Gentner C, et al. Efficient thermal management strategies for cold starts of a proton exchange membrane fuel cell system[J]. Applied Energy, 2020, 279: 115813. |
16 | Li L J, Wang S X, Yue L K, et al. Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode[J]. Applied Energy, 2019, 254: 113716. |
17 | Luo M Z, Zhang J, Zhang C Z, et al. Cold start investigation of fuel cell vehicles with coolant preheating strategy[J]. Applied Thermal Engineering, 2022, 201: 117816. |
18 | Jiang F M, Wang C Y, Chen K S. Current ramping: a strategy for rapid start-up of PEMFCs from subfreezing environment[J]. Journal of the Electrochemical Society, 2010, 157(3): B342-B347. |
19 | Jiao K, Li X G. Effects of various operating and initial conditions on cold start performance of polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(19): 8171-8184. |
20 | Guo Q, Luo Y Q, Jiao K. Modeling of assisted cold start processes with anode catalytic hydrogen-oxygen reaction in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(2): 1004-1015. |
21 | Nicotera I, Coppola L, Rossi C O, et al. NMR investigation of the dynamics of confined water in Nafion-based electrolyte membranes at subfreezing temperatures[J]. The Journal of Physical Chemistry B, 2009, 113(42): 13935-13941. |
22 | Ko J, Kim W G, Lim Y D, et al. Improving the cold-start capability of polymer electrolyte fuel cells (PEFCs) by using a dual-function micro-porous layer (MPL): numerical simulations[J]. International Journal of Hydrogen Energy, 2013, 38(1): 652-659. |
23 | Zhang S S, Yu H M, Zhu H, et al. Effects of freeze/thaw cycles and gas purging method on polymer electrolyte membrane fuel cells[J]. Chinese Journal of Chemical Engineering, 2006, 14(6): 802-805. |
24 | Hou J B, Yu H M, Zhang S S, et al. Analysis of PEMFC freeze degradation at -20℃ after gas purging[J]. Journal of Power Sources, 2006, 162(1): 513-520. |
25 | Sinha P K, Wang C Y. Two-phase modeling of gas purge in a polymer electrolyte fuel cell[J]. Journal of Power Sources, 2008, 183(2): 609-618. |
26 | Kim S I, Lee N W, Kim Y S, et al. Effective purge method with addition of hydrogen on the cathode side for cold start in PEM fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11357-11369. |
27 | Lee S Y, Kim S U, Kim H J, et al. Water removal characteristics of proton exchange membrane fuel cells using a dry gas purging method[J]. Journal of Power Sources, 2008, 180(2): 784-790. |
28 | Sinha P K, Wang C Y. Gas purge in a polymer electrolyte fuel cell[J]. Journal of the Electrochemical Society, 2007, 154(11): B1158-B1166. |
29 | Pan H, Xu L F, Cheng S L, et al. Control-oriented modeling of gas purging process on the cathode of polymer electrolyte membrane fuel cell during shutting down[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18584-18594. |
30 | Tajiri K, Wang C Y, Tabuchi Y. Water removal from a PEFC during gas purge[J]. Electrochimica Acta, 2008, 53(22): 6337-6343. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[4] | Xiaoyu JIA, Jian YANG, Bo WANG, Mei LIN, Qiuwang WANG. Pore scale numerical simulations for wicking performance of metallic woven mesh [J]. CIESC Journal, 2023, 74(5): 1928-1938. |
[5] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[6] | Xiangning HU, Yuanbo YIN, Chen YUAN, Yun SHI, Cuiwei LIU, Qihui HU, Wen YANG, Yuxing LI. Experimental study on visualization of refined oil migration in soil [J]. CIESC Journal, 2023, 74(4): 1827-1835. |
[7] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[8] | Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569. |
[9] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[10] | Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081. |
[11] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[12] | Xiang GUO, Jinshuo QIAO, Zhenhua WANG, Wang SUN, Kening SUN. Progress of structure for carbon-fueled solid oxide fuel cells [J]. CIESC Journal, 2023, 74(1): 290-302. |
[13] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[14] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[15] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||