CIESC Journal ›› 2023, Vol. 74 ›› Issue (6): 2436-2446.DOI: 10.11949/0438-1157.20230440
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yanhui LI1,2(), Shaoming DING1, Zhouyang BAI1, Yinan ZHANG1, Zhihong YU1, Limei XING1, Pengfei GAO1, Yongzhen WANG2
Received:
2023-05-05
Revised:
2023-06-09
Online:
2023-07-27
Published:
2023-06-05
Contact:
Yanhui LI
李艳辉1,2(), 丁邵明1, 白周央1, 张一楠1, 于智红1, 邢利梅1, 高鹏飞1, 王永贞2
通讯作者:
李艳辉
作者简介:
李艳辉(1989—),男,博士,副教授,yhli19@sina.com
基金资助:
CLC Number:
Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers[J]. CIESC Journal, 2023, 74(6): 2436-2446.
李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Point defect model of metal corrosion in supercritical water at low density for ultra-supercritical thermal power generationvm—vacancy in the metal substrate; VMχ'— cation vacancy; Miχ+—cation interstitial; VÖ —oxygen (anion) vacancy; OO—lattice oxygen within the oxides; MM—cation at the cation sublattice of oxides; MOχ/2/MOδ/2 —barrier / outer layer oxide; MOθ/2(d) — products by further oxidizing outer layer oxide
反应 | |||
---|---|---|---|
R i (i = 1, 2, 3) | |||
R i (i = 4, 5, 6, 7, 8, 9) | 0 | 0 | 0 |
Table 1 Definition of intermediate parameters for the rate constants of reactions at the 9 atomic/molecular scale interfaces
反应 | |||
---|---|---|---|
R i (i = 1, 2, 3) | |||
R i (i = 4, 5, 6, 7, 8, 9) | 0 | 0 | 0 |
反应 | ||
---|---|---|
R i (i = 1,2,3) | ||
R i (i = 4,5,6,7,8,9) |
Table 2 Expressions for the standard rate constants and base rate constants for basic interfacial reactions
反应 | ||
---|---|---|
R i (i = 1,2,3) | ||
R i (i = 4,5,6,7,8,9) |
符号 | 参数 | 数值 |
---|---|---|
T/℃ | 温度 | 600 |
DO/(mg/L) | 溶解氧量 | 0.01 |
pH | pH | 11 |
阻挡层/外层界面极化率 | 0.70 | |
传递系数 | 0.10 | |
基本速率常数 | 8.26×10-11 | |
基本速率常数 | 9.97×10-9 | |
基本速率常数 | 8.55×10-9 | |
阻挡层/环境界面处电势降对pH的依赖性 | -0.005 | |
V/V | 等效腐蚀电位 | 0.76 |
ε/(V/cm) | 膜内电场强度 | 128.20 |
阻挡层平均密度 | 4.97 | |
外层平均密度 | 5.04 | |
PBR | 平均Pilling-Bedworth比率 | 2.08 |
n、m、q、r | 界面反应对氧浓度的动力学级数 | 0.50 |
Table 3 Basic parameters obtained from the optimization of the kinetic model in mass gain for T92 steel at 600℃
符号 | 参数 | 数值 |
---|---|---|
T/℃ | 温度 | 600 |
DO/(mg/L) | 溶解氧量 | 0.01 |
pH | pH | 11 |
阻挡层/外层界面极化率 | 0.70 | |
传递系数 | 0.10 | |
基本速率常数 | 8.26×10-11 | |
基本速率常数 | 9.97×10-9 | |
基本速率常数 | 8.55×10-9 | |
阻挡层/环境界面处电势降对pH的依赖性 | -0.005 | |
V/V | 等效腐蚀电位 | 0.76 |
ε/(V/cm) | 膜内电场强度 | 128.20 |
阻挡层平均密度 | 4.97 | |
外层平均密度 | 5.04 | |
PBR | 平均Pilling-Bedworth比率 | 2.08 |
n、m、q、r | 界面反应对氧浓度的动力学级数 | 0.50 |
参数 | 工况 | ||||
---|---|---|---|---|---|
500℃① | 600℃ | 650℃① | 700℃① | ||
宏观 拟合值① | 微观 计算值② | ||||
P1/(mg/cm2) | 0.130 | 0.130 | 0.104 | 0.130 | 0.130 |
P2/(mg/cm2) | -0.98 | -2.60 | -2.70 | -4.30 | -5.20 |
P3/(mg/(cm2∙s)) | 4.98×10-7 | 6.92×10-6 | 6.81×10-6 | 2.06×10-5 | 3.97×10-5 |
P4/(mg/(cm2∙s)) | 3.46×10-8 | 3.68×10-8 | 3.74×10-8 | 3.75×10-8 | 3.85×10-8 |
P5/(mg/(cm2∙s)) | 5.41×10-7 | 7.22×10-6 | 7.38×10-6 | 2.23×10-5 | 4.31×10-5 |
P6/(mg/(cm2∙s)) | 3.83×10-8 | 4.07×10-8 | 4.05×10-8 | 4.12×10-8 | 4.17×10-8 |
P7/(mg/cm2) | -22.9 | -51.0 | -55.5 | -82.7 | -96.2 |
Table 4 Macroscopic parameter values of kinetic model in mass gain for T92 at 500—700℃
参数 | 工况 | ||||
---|---|---|---|---|---|
500℃① | 600℃ | 650℃① | 700℃① | ||
宏观 拟合值① | 微观 计算值② | ||||
P1/(mg/cm2) | 0.130 | 0.130 | 0.104 | 0.130 | 0.130 |
P2/(mg/cm2) | -0.98 | -2.60 | -2.70 | -4.30 | -5.20 |
P3/(mg/(cm2∙s)) | 4.98×10-7 | 6.92×10-6 | 6.81×10-6 | 2.06×10-5 | 3.97×10-5 |
P4/(mg/(cm2∙s)) | 3.46×10-8 | 3.68×10-8 | 3.74×10-8 | 3.75×10-8 | 3.85×10-8 |
P5/(mg/(cm2∙s)) | 5.41×10-7 | 7.22×10-6 | 7.38×10-6 | 2.23×10-5 | 4.31×10-5 |
P6/(mg/(cm2∙s)) | 3.83×10-8 | 4.07×10-8 | 4.05×10-8 | 4.12×10-8 | 4.17×10-8 |
P7/(mg/cm2) | -22.9 | -51.0 | -55.5 | -82.7 | -96.2 |
参数 | 关系式 |
---|---|
P1 | 1.30×10-4 |
P2 | |
P3 | |
P4 | |
P5 | |
P6 | |
P7 |
Table 5 The dependence of macroscopic parameters on temperature in the mass gain kinetic model obtained by direct fitting
参数 | 关系式 |
---|---|
P1 | 1.30×10-4 |
P2 | |
P3 | |
P4 | |
P5 | |
P6 | |
P7 |
参数 | 关系式 | 常数 |
---|---|---|
— | ||
— | ||
— | ||
ε | — | |
P1 | 1.04×10-4 | — |
P2 | ||
P3 | ||
P4 | ||
P5 | ||
P6 | ||
P7 | — |
Table 6 Atomic-scale reaction rate constants and intermediate parameters P1—P7 of the mass gain kinetic model as a function of temperature
参数 | 关系式 | 常数 |
---|---|---|
— | ||
— | ||
— | ||
ε | — | |
P1 | 1.04×10-4 | — |
P2 | ||
P3 | ||
P4 | ||
P5 | ||
P6 | ||
P7 | — |
Fig.6 Application of oxide film growth rate model for corrosion prediction for in-service or intended to be extended service boilers with certain degree of corrosion
1 | 谭增强, 王一坤, 牛拥军, 等. 双碳目标下煤电深度调峰及调频技术研究进展[J]. 热能动力工程, 2022, 37(8): 1-8. |
Tan Z Q, Wang Y K, Niu Y J, et al. Research progress of deep peak regulation and frequency modulation technology for coal-fired power plant under double-carbon targets[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(8): 1-8. | |
2 | 周科, 何敏强, 牛田田, 等. 超临界660 MW褐煤锅炉深度调峰负荷水动力特性研究[J]. 热力发电, 2022, 51(9): 88-95. |
Zhou K, He M Q, Niu T T, et al. Research on hydrodynamic characteristics at deep peak load regulation of 660 MW supercritical lignite boiler[J]. Thermal Power Generation, 2022, 51(9): 88-95. | |
3 | 吴鹏举, 朱超, 万李, 等. 超临界机组锅炉20%负荷深度调峰水动力实炉试验研究[J]. 热力发电, 2021, 50(4): 59-66. |
Wu P J, Zhu C, Wan L, et al. Actual furnace test research on hydrodynamics of a supercritical boiler at 20% deep peak load[J]. Thermal Power Generation, 2021, 50(4): 59-66. | |
4 | 欧阳诗洁, 李娟, 董乐, 等. 超超临界锅炉低负荷运行时的流动不稳定性计算分析[J]. 西安交通大学学报, 2019, 53(7): 84-91. |
Ouyang S J, Li J, Dong L, et al. Calculation and analysis on the flow instability of an ultra supercritical boiler under low load[J]. Journal of Xi'an Jiaotong University, 2019, 53(7): 84-91. | |
5 | 边彩霞, 周克毅, 朱正林, 等. 停机过程中锅炉高温受热面蒸汽侧氧化膜的应力分析[J]. 化工学报, 2013, 64(4): 1444-1452. |
Bian C X, Zhou K Y, Zhu Z L, et al. Numerical analysis of stresses of steam-side oxide scales in boiler high-temperature heating surface in shutdown process[J]. CIESC Journal, 2013, 64(4): 1444-1452. | |
6 | 李海燕, 刘欢, 张秀菊, 等. HVOF喷涂用于提高锅炉换热面耐磨损耐腐蚀性能综述[J]. 化工学报, 2021, 72(4): 1833-1846. |
Li H Y, Liu H, Zhang X J, et al. Summary of improving erosion and corrosion resistance of heat exchange surfaces in boilers through HVOF technology[J]. CIESC Journal, 2021, 72(4): 1833-1846. | |
7 | Gómez-Briceño D, Blázquez F, Sáez-Maderuelo A. Oxidation of austenitic and ferritic/martensitic alloys in supercritical water[J]. The Journal of Supercritical Fluids, 2013, 78: 103-113. |
8 | Guan X, MacDonald D D. Determination of corrosion mechanisms and estimation of electrochemical kinetics of metal corrosion in high subcritical and supercritical aqueous systems[J]. Corrosion, 2009, 65(6): 376-387. |
9 | Guzonas D A, Cook W G. Cycle chemistry and its effect on materials in a supercritical water-cooled reactor: a synthesis of current understanding[J]. Corrosion Science, 2012, 65: 48-66. |
10 | Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review[J]. The Journal of Supercritical Fluids, 2004, 29(1/2): 1-29. |
11 | Li Y H, Xu T T, Wang S Z, et al. Characterization of oxide scales formed on heating equipment in supercritical water gasification process for producing hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29508-29515. |
12 | MacDonald D D, Guan X. Volume of activation for the corrosion of type 304 stainless steel in high subcritical and supercritical aqueous systems[J]. Corrosion, 2009, 65(7): 427-437. |
13 | 沈朝, 汪家梅, 张乐福. 镍基合金C276在超临界水中的腐蚀行为[J]. 工程科学学报, 2016, 38(5): 706-713. |
Shen Z, Wang J M, Zhang L F. Corrosion behavior of Ni-base alloy C276 in supercritical water[J]. Chinese Journal of Engineering, 2016, 38(5): 706-713. | |
14 | 张洁, 曲积钰, 卢金玲, 等. 亚临界/超临界水条件下镍基合金(Incoloy800, 825, 625)的硫化腐蚀特性研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 892-898. |
Zhang J, Qu J Y, Lu J L, et al. Sulfidation corrosion behavior of nickel-based alloys(Incoloy800, 825 and 625) in sub/supercritical water[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(6): 892-898. | |
15 | Zhang N Q, Yue G Q, Lv F B, et al. Oxidation of low-alloy steel in high temperature steam and supercritical water[J]. Materials at High Temperatures, 2017, 34(3): 222-228. |
16 | Li Y H, Wang S Z, Sun P P, et al. Early oxidation mechanism of austenitic stainless steel TP347H in supercritical water[J]. Corrosion Science, 2017, 128: 241-252. |
17 | Zhu Z L, Xu H, Jiang D F, et al. Influence of temperature on the oxidation behaviour of a ferritic-martensitic steel in supercritical water[J]. Corrosion Science, 2016, 113: 172-179. |
18 | Li Y H, Wang S Z, Sun P P, et al. Investigation on early formation and evolution of oxide scales on ferritic-martensitic steels in supercritical water[J]. Corrosion Science, 2018, 135: 136-146. |
19 | Zhu Z L, Xu H, Jiang D F, et al. Temperature dependence of oxidation behaviour of a ferritic-martensitic steel in supercritical water at 600—700℃[J]. Oxidation of Metals, 2016, 86(5/6): 483-496. |
20 | Bischoff J, Motta A T. Oxidation behavior of ferritic-martensitic and ODS steels in supercritical water[J]. Journal of Nuclear Materials, 2012, 424(1/2/3): 261-276. |
21 | Fromhold A T J, Fromhold R G. Chapter 1: an overview of metal oxidation theory[M]//Reactions of Solids with Gases. Amsterdam: Elsevier, 1984: 1-117. |
22 | Atkinson A. Transport processes during the growth of oxide films at elevated temperature[J]. Reviews of Modern Physics, 1985, 57(2): 437-470. |
23 | Li Y H, Wang S Z, Xu T T, et al. Novel designs for the reliability and safety of supercritical water oxidation process for sludge treatment[J]. Process Safety and Environmental Protection, 2021, 149: 385-398. |
24 | Li Y H, MacDonald D D, Yang J, et al. Point defect model for the corrosion of steels in supercritical water(part Ⅰ): Film growth kinetics[J]. Corrosion Science, 2020, 163: 108280. |
25 | Li Y H, Xu T T, Wang S Z, et al. Predictions and analyses on the growth behavior of oxide scales formed on ferritic-martensitic in supercritical water[J]. Oxidation of Metals, 2019, 92(1/2): 27-48. |
26 | 王起江, 洪杰, 徐松乾, 等. 超超临界电站锅炉用关键材料[J]. 北京科技大学学报, 2012, 34(S1): 26-33. |
Wang Q J, Hong J, Xu S Q, et al. Key materials used in ultra-supercritical power station boilers[J]. Journal of University of Science and Technology Beijing, 2012, 34(S1): 26-33. | |
27 | 于鸿垚, 迟成宇, 董建新, 等. 650℃长期时效过程中Super304H耐热不锈钢组织的演变[J]. 北京科技大学学报, 2010, 32(7): 877-882. |
Yu H Y, Chi C Y, Dong J X, et al. Microstructural evolution of heat-resistant steel Super304H during 650℃ long term aging[J]. Journal of University of Science and Technology Beijing, 2010, 32(7): 877-882. | |
28 | Dudziak T, Łukaszewicz M, Simms N, et al. Analysis of high temperature steam oxidation of superheater steels used in coal fired boilers[J]. Oxidation of Metals, 2016, 85(1): 171-187. |
29 | 尹开锯, 邱绍宇, 唐睿, 等. 铁素体-马氏体钢P91和P92在超临界水中腐蚀后氧化膜多孔性分析[J]. 中国腐蚀与防护学报, 2010, 30(1): 1-5. |
Yin K J, Qiu S Y, Tang R, et al. Characterization of the porosity of the oxide scales on ferritic-martensitic steel P91 and P92 exposed in supercritical water[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(1): 1-5. | |
30 | Tan L, Ren X, Allen T R. Corrosion behavior of 9%—12% Cr ferritic-martensitic steels in supercritical water[J]. Corrosion Science, 2010, 52(4): 1520-1528. |
31 | Was G S, Ampornrat P, Gupta G, et al. Corrosion and stress corrosion cracking in supercritical water[J]. Journal of Nuclear Materials, 2007, 371(1/2/3): 176-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||