CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3203-3215.DOI: 10.11949/0438-1157.20230541
• Reviews and monographs • Previous Articles Next Articles
Jiayi ZHANG1(), Jiali HE1, Jiangpeng XIE1, Jian WANG1, Yu ZHAO1,2, Dongqiang ZHANG1,2()
Received:
2023-06-05
Revised:
2023-08-02
Online:
2023-10-18
Published:
2023-08-25
Contact:
Dongqiang ZHANG
张佳怡1(), 何佳莉1, 谢江鹏1, 王健1, 赵鹬1,2, 张栋强1,2()
通讯作者:
张栋强
作者简介:
张佳怡(1998—),女,硕士研究生,212081702005@lut.edu.cn
基金资助:
CLC Number:
Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production[J]. CIESC Journal, 2023, 74(8): 3203-3215.
张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215.
膜类型 | 进料/% | 渗透液/% | 通量/(g/(m2·h)) | 选择性 | ||
---|---|---|---|---|---|---|
NMP | H2O | NMP | H2O | |||
15% PEBA-2533 | 97.12 | 2.88 | 37.22 | 63 | 41.50 | 56.96 |
15% PEBA-2533 + 10% zeolite | 97.12 | 2.88 | 36.47 | 64 | 45.14 | 58.84 |
15% PEBA-2533 + 20% zeolite | 97.12 | 2.88 | 33.28 | 67 | 48.64 | 67.71 |
15% PEBA-2533 + 30% zeolite | 97.12 | 2.88 | 38.18 | 62 | 50.48 | 54.68 |
15% PEBA-2533 + 2% TDI crosslinked for 2 h | 97.12 | 2.88 | 35.14 | 65 | 44.64 | 62.34 |
15% PEBA-2533 + 10% zeolite + 2% TDI crosslinked for 2 h | 97.12 | 2.88 | 35.9 | 64 | 49.47 | 60.3 |
15% PEBA-2533 + 20% zeolite + 2% TDI crosslinked for 2 h | 97.12 | 2.88 | 30.75 | 69 | 51.74 | 76.06 |
15% PEBA-2533 + 30% zeolite + 2% TDI crosslinked for 2 h | 97.12 | 2.88 | 21.69 | 78 | 54.94 | 121.95 |
Table 1 Effect of zeolite loading on membrane performance for NMP dehydration at constant temperature (30℃) and permeate pressure (133.3 Pa)[64]
膜类型 | 进料/% | 渗透液/% | 通量/(g/(m2·h)) | 选择性 | ||
---|---|---|---|---|---|---|
NMP | H2O | NMP | H2O | |||
15% PEBA-2533 | 97.12 | 2.88 | 37.22 | 63 | 41.50 | 56.96 |
15% PEBA-2533 + 10% zeolite | 97.12 | 2.88 | 36.47 | 64 | 45.14 | 58.84 |
15% PEBA-2533 + 20% zeolite | 97.12 | 2.88 | 33.28 | 67 | 48.64 | 67.71 |
15% PEBA-2533 + 30% zeolite | 97.12 | 2.88 | 38.18 | 62 | 50.48 | 54.68 |
15% PEBA-2533 + 2% TDI crosslinked for 2 h | 97.12 | 2.88 | 35.14 | 65 | 44.64 | 62.34 |
15% PEBA-2533 + 10% zeolite + 2% TDI crosslinked for 2 h | 97.12 | 2.88 | 35.9 | 64 | 49.47 | 60.3 |
15% PEBA-2533 + 20% zeolite + 2% TDI crosslinked for 2 h | 97.12 | 2.88 | 30.75 | 69 | 51.74 | 76.06 |
15% PEBA-2533 + 30% zeolite + 2% TDI crosslinked for 2 h | 97.12 | 2.88 | 21.69 | 78 | 54.94 | 121.95 |
膜类型 | 进料水含量/%(质量) | 温度/ ℃ | 通量/(kg/(m2·h)) | 分离因子 | 文献 |
---|---|---|---|---|---|
polyurethane urea | — | 45 | 0.013 | 3396 | [ |
BTESE | 8 | 130 | 3.2 | 1183 | [ |
high-silica CHA-type | 50 | 130 | 36 | 1100 | [ |
PAN hollow fiber | 30 | 70 | 1.5 | — | [ |
poly(ether-block-amide) 2533 + 4A zeolite + TDI | 3 | 30 | 1.2 | 180 | [ |
chitosan/poly(ether-block-amide) composite (TEOS crosslinked) | 1.3 | 30 | 0.02 | 1007 | [ |
polyvinyl alcohol (PVA)/CNT composite membranes | — | 80 | 0.06 | 3500 | [ |
NaA zeolite | 0.1 | 150 | 0.11 | 9997 | [ |
Table 2 Summary of membrane materials used for NMP recovery by pervaporation technology
膜类型 | 进料水含量/%(质量) | 温度/ ℃ | 通量/(kg/(m2·h)) | 分离因子 | 文献 |
---|---|---|---|---|---|
polyurethane urea | — | 45 | 0.013 | 3396 | [ |
BTESE | 8 | 130 | 3.2 | 1183 | [ |
high-silica CHA-type | 50 | 130 | 36 | 1100 | [ |
PAN hollow fiber | 30 | 70 | 1.5 | — | [ |
poly(ether-block-amide) 2533 + 4A zeolite + TDI | 3 | 30 | 1.2 | 180 | [ |
chitosan/poly(ether-block-amide) composite (TEOS crosslinked) | 1.3 | 30 | 0.02 | 1007 | [ |
polyvinyl alcohol (PVA)/CNT composite membranes | — | 80 | 0.06 | 3500 | [ |
NaA zeolite | 0.1 | 150 | 0.11 | 9997 | [ |
27 | 朱本伟, 姚忠, 仲兆祥, 等. 渗透汽化分离精油中挥发性芳香化合物的研究进展[J]. 化工进展, 2021, 40(11): 5875-5882. |
Zhu B W, Yao Z, Zhong Z X, et al. Research progress of pervaporation in separation of volatile aromatic compounds within essential oils[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5875-5882. | |
28 | Geens J, van der Bruggen B, Vandecasteele C. Transport model for solvent permeation through nanofiltration membranes[J]. Separation and Purification Technology, 2006, 48(3): 255-263. |
29 | 顾学红, 徐南平. 渗透汽化脱水分子筛膜的制备与应用研究[J]. 中国工程科学, 2014, 16(12): 52-58. |
Gu X H, Xu N P. Study of zeolite membranes for pervaporation dehydration and their applications[J]. Strategic Study of Chinese Academy of Engineering, 2014, 16(12): 52-58. | |
30 | 程浩, 张国才. 渗透汽化膜分离技术最新研究进展[J]. 应用化工, 2021, 50(12): 3489-3493. |
Cheng H, Zhang G C. The research progress of pervaporation membrane separation technology[J]. Applied Chemical Industry, 2021, 50(12): 3489-3493. | |
31 | Ng T C A, Lyu Z Y, Wang C S, et al. Effect of surface-patterned topographies of ceramic membranes on the filtration of activated sludge and their interaction with different particle sizes[J]. Journal of Membrane Science, 2022, 645: 120125. |
32 | 熊柏闻, 吴红丹, 周志辉. 渗透汽化有机-无机杂化膜研究进展[J]. 精细化工, 2021, 38(3): 433-438, 453. |
Xiong B W, Wu H D, Zhou Z H. Research progress of organic-inorganic hybrid membranes for pervaporation[J]. Fine Chemicals, 2021, 38(3): 433-438, 453. | |
33 | 张静. PDMS渗透汽化膜分离水中有机物的研究进展[J]. 净水技术, 2022, 41(1): 14-22. |
Zhang J. Research progress of PDMS pervaporation membranes for organics removal in aqueous solution[J]. Water Purification Technology, 2022, 41(1): 14-22. | |
34 | Zhang Z X, Gu Q L, Ng T C A, et al. Hierarchically porous interlayer for highly permeable and fouling-resistant ceramic membranes in water treatment[J]. Separation and Purification Technology, 2022, 293: 121092. |
35 | 林源. 渗透汽化分离膜的制备与应用研究进展[J]. 南京工业大学学报, 2020, 42(6): 700-709. |
Lin Y. Advances of preparation and application of pervaporation separation membrane[J]. Journal of Nanjing Tech University (Natural Science Edition), 2020, 42(6): 700-709. | |
36 | Nunes S P, Culfaz-Emecen P Z, Ramon G Z, et al. Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes[J]. Journal of Membrane Science, 2020, 598: 117761. |
37 | Gu Q L, Ng T C A, Bao Y P, et al. Developing better ceramic membranes for water and wastewater treatment: where microstructure integrates with chemistry and functionalities[J]. Chemical Engineering Journal, 2022, 428: 130456. |
38 | Cheng X X, Pan F S, Wang M R, et al. Hybrid membranes for pervaporation separations[J]. Journal of Membrane Science, 2017, 541: 329-346. |
39 | 周宗尧, 张朔, 王宁, 等. 有机溶剂分离膜技术研究进展[J]. 膜科学与技术, 2018, 38(1): 104-113. |
Zhou Z Y, Zhang S, Wang N, et al. Progress in the technology of organic solvent separation membrane[J]. Membrane Science and Technology, 2018, 38(1): 104-113. | |
40 | 李敬, 周佳欣, 尤颖, 等. 用于乙醇脱水的亲水性渗透汽化膜材料研究进展[J]. 化工新型材料, 2020, 48(9): 7-11, 15. |
Li J, Zhou J X, You Y, et al. Research progress of hydrophilic pervaporation membrane material for ethanol dehydration[J]. New Chemical Materials, 2020, 48(9): 7-11, 15. | |
41 | Hasegawa Y, Matsuura W, Abe C, et al. Influence of organic solvent species on dehydration behaviors of NaA-type zeolite membrane[J]. Membranes, 2021, 11(5): 347. |
42 | 王学瑞, 张春, 张玉亭, 等. 中空纤维分子筛膜制备与应用研究进展[J]. 膜科学与技术, 2020, 40(1): 313-321. |
Wang X R, Zhang C, Zhang Y T, et al. Fabrication and application of hollow fiber zeolite membranes[J]. Membrane Science and Technology, 2020, 40(1): 313-321. | |
43 | Yang W H, Yang X, Wang Y X, et al. Pervaporation separation of C6 alkane isomers by Al-bttotb membrane[J]. Journal of Membrane Science, 2022, 661: 120916. |
44 | Rostovtseva V, Faykov I, Pulyalina A. A review of recent developments of pervaporation membranes for ethylene glycol purification[J]. Membranes, 2022, 12(3): 312. |
45 | Luo R W, Bai P, Lyu J F, et al. Fabrication of melamine-based hybrid organic membrane for ethanol/water pervaporation[J]. Microporous and Mesoporous Materials, 2022, 335: 111810. |
46 | Wang J L, Cao B, Zhang R, et al. Spray-coated tough thin film composite membrane for pervaporation desalination[J]. Chemical Engineering Research and Design, 2022, 179: 493-501. |
47 | Wang M, Xu Q S, Tang H J, et al. Machine learning-enabled prediction and high-throughput screening of polymer membranes for pervaporation separation[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 8427-8436. |
1 | Su Y J, Zhou K, Yuan Y C, et al. Study on prediction of binder distribution in the drying process of the coated web of positive electrode for lithium ion battery[J]. IOP Conference Series: Materials Science and Engineering, 2020, 793: 012025. |
2 | 朱伟伟, 张建, 刘一凡, 等. 先进锂离子电池用黏结剂介绍[J]. 浙江化工, 2020, 51(10): 26-32. |
Zhu W W, Zhang J, Liu Y F, et al. Introduction of binders for advanced lithium ion batteries[J]. Zhejiang Chemical Industry, 2020, 51(10): 26-32. | |
3 | Wang H M, Wu B Z, Jiang F, et al. Experimental study on distillation and purification of reclaimed NMP[J]. Journal of Physics: Conference Series, 2022, 2393: 012022. |
4 | 肖忠良, 尹碧露, 宋刘斌, 等. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
Xiao Z L, Yin B L, Song L B, et al. Research progress of waste lithium-ion battery recycling process and its safety risk analysis[J]. CIESC Journal, 2023, 74(4): 1446-1456. | |
5 | Ahmed S, Nelson P A, Gallagher K G, et al. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing[J]. Journal of Power Sources, 2016, 322: 169-178. |
6 | 迪建东, 李国盛, 郑晓舟, 等. 锂电正极涂敷NMP回收技术综述[J]. 广东化工, 2020, 47(3): 112-114. |
Di J D, Li G S, Zheng X Z, et al. Review of recycling technology of NMP coating for lithium battery positive electrode[J]. Guangdong Chemical Industry, 2020, 47(3): 112-114. | |
7 | Wang H, Xie K, Wang L Y, et al. N-methyl-2-pyrrolidone as a solvent for the non-aqueous electrolyte of rechargeable Li-air batteries[J]. Journal of Power Sources, 2012, 219: 263-271. |
8 | Sliz R, Valikangas J, Santos H S, et al. Suitable cathode NMP replacement for efficient sustainable printed Li-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(4): 4047-4058. |
9 | Li B F, Qi B, Guo Z Y, et al. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: a review[J]. Chemosphere, 2023, 327: 138528. |
10 | Zhuang Y, Si Z H, Pang S Y, et al. Recent progress in pervaporation membranes for furfural recovery: a mini review[J]. Journal of Cleaner Production, 2023, 396: 136481. |
48 | Ünügül T, Nigiz F U. Evaluation of halloysite nanotube-loaded chitosan-based nanocomposite membranes for water desalination by pervaporation[J]. Water, Air & Soil Pollution, 2022, 233(2): 1-12. |
49 | Wang J C, Dommati H, Hsieh S J. Review of additive manufacturing methods for high-performance ceramic materials[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103: 2627-2647. |
50 | 范益群, 漆虹, 徐南平. 多孔陶瓷膜制备技术研究进展[J]. 化工学报, 2013, 64(1): 107-115. |
Fan Y Q, Qi H, Xu N P. Advance in preparation techniques of porous ceramic membranes[J]. CIESC Journal, 2013, 64(1): 107-115. | |
51 | 邢卫红, 范益群, 仲兆祥, 等. 面向过程工业的陶瓷膜制备与应用进展[J]. 化工学报, 2009, 60(11): 2679-2688. |
Xing W H, Fan Y Q, Zhong Z X, et al. Recent advances in process-engineering oriented preparation and application of ceramic membranes[J]. CIESC Journal, 2009, 60(11): 2679-2688. | |
52 | 史冬梅, 张雷, 李丹. 高性能膜材料国内外发展现状与趋势[J]. 科技中国, 2019(4): 4-7. |
Shi D M, Zhang L, Li D. Development status and trend of high performance membrane materials at home and abroad[J]. Scitech in China, 2019(4): 4-7. | |
53 | 吕阳光, 左培培, 杨正金, 等. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
Lyu Y G, Zuo P P, Yang Z J, et al. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration[J]. CIESC Journal, 2023, 74(4): 1598-1606. | |
54 | 李继定, 杨正, 金夏阳, 等. 渗透汽化膜技术及其应用[J]. 中国工程科学, 2014, 16(12): 46-51. |
Li J D, Yang Z, Jin X Y, et al. Pervaporation membrane separation technology and its application[J]. Strategic Study of Chinese Academy of Engineering, 2014, 16(12): 46-51. | |
55 | 张春, 王学瑞, 刘华, 等. 面向工业过程碳减排的分子筛膜技术研究进展[J]. 化工进展, 2022, 41(3): 2021-2353. |
11 | Elsheniti M B, Ibrahim A, Elsamni O, et al. Experimental and economic investigation of sweeping gas membrane distillation/pervaporation modules using novel pilot scale device[J]. Separation and Purification Technology, 2023, 310: 123165. |
12 | 陈献富, 王冬雨, 范益群, 等. 基于3D打印的多孔陶瓷膜研究进展[J]. 化工学报, 2023, 74(1): 105-115. |
Chen X F, Wang D Y, Fan Y Q, et al. Research progress of porous ceramic membranes based on 3D printing technologies[J]. CIESC Journal, 2023, 74(1): 105-115. | |
13 | Chen X F, Qi T, Zhang Y, et al. Facile pore size tuning and characterization of nanoporous ceramic membranes for the purification of polysaccharide[J]. Journal of Membrane Science, 2020, 597: 117631. |
14 | Niu B H, Yang L, Meng S J, et al. Time-dependent analysis of polysaccharide fouling by Hermia models: reveal the structure of fouling layer[J]. Separation and Purification Technology, 2022, 302: 122093. |
15 | Wang S N, Huang Z, Wang J T, et al. PVA/UiO-66 mixed matrix membranes for n-butanol dehydration via pervaporation and effect of ethanol[J]. Separation and Purification Technology, 2023, 313: 123487. |
16 | Lu X T, Huang J C, Pinelo M, et al. Modelling and optimization of pervaporation membrane modules: a critical review[J]. Journal of Membrane Science, 2022, 664: 121084. |
17 | Saw E T, Ang K L, He W, et al. Molecular sieve ceramic pervaporation membranes in solvent recovery: a comprehensive review[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103367. |
18 | Xu X, Nikolaeva D, Hartanto Y, et al. MOF-based membranes for pervaporation[J]. Separation and Purification Technology, 2021, 278: 119233. |
19 | Cao X T, Wang K A, Feng X S. Removal of phenolic contaminants from water by pervaporation[J]. Journal of Membrane Science, 2021, 623: 119043. |
20 | Khan R, Ul Haq I, Mao H, et al. Enhancing the pervaporation performance of PEBA/PVDF membrane by incorporating MAF-6 for the separation of phenol from its aqueous solution[J]. Separation and Purification Technology, 2021, 256: 117804. |
21 | Mao H, Li S H, Zhang A S, et al. Furfural separation from aqueous solution by pervaporation membrane mixed with metal organic framework MIL-53(Al) synthesized via high efficiency solvent-controlled microwave[J]. Separation and Purification Technology, 2021, 272: 118813. |
22 | Ji Y F, Chen G N, Liu G Z, et al. Ultrathin membranes with a polymer/nanofiber interpenetrated structure for high-efficiency liquid separations[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36717-36726. |
23 | Liu G P, Jin W Q. Pervaporation membrane materials: recent trends and perspectives[J]. Journal of Membrane Science, 2021, 636: 119557. |
24 | Mukherjee M, Roy S, Bhowmick K, et al. Development of high performance pervaporation desalination membranes: a brief review[J]. Process Safety and Environmental Protection, 2022, 159: 1092-1104. |
25 | Wood D L, Li J L, Daniel C. Prospects for reducing the processing cost of lithium ion batteries[J]. Journal of Power Sources, 2015, 275: 234-242. |
26 | Song S, Rong L W, Dong K J, et al. Pore-scale numerical study of intrinsic permeability for fluid flow through asymmetric ceramic microfiltration membranes[J]. Journal of Membrane Science, 2022, 642: 119920. |
55 | Zhang C, Wang X R, Liu H, et al. Progress of zeolite membranes for reduction of carbon emission in industrial processes[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1376-1390. |
56 | 吕静, 毛恒, 徐李昊, 等. PD@ZIF-8@PPy/PVA混合基质膜渗透汽化乙醇脱水研究[J]. 膜科学与技术, 2023, 43(1): 45-55. |
Lyu J, Mao H, Xu L H, et al. Study on ethanol dehydration by pervaporation of PD@ZIF-8@PPy/PVA mixed matrix membrane[J]. Membrane Science and Technology, 2023, 43(1): 45-55. | |
57 | Liu S, Zhou G Y, Cheng G B, et al. Emerging membranes for separation of organic solvent mixtures by pervaporation or vapor permeation[J]. Separation and Purification Technology, 2022, 299: 121729. |
58 | 洪周, 王圣贤, 张春, 等. T型分子筛膜的制备及其在有机物废水中的应用[J]. 现代化工, 2021, 41(3): 83-87. |
Hong Z, Wang S X, Zhang C, et al. Preparation of T-type molecular sieve membrane and its application in treatment of organic wastewater[J]. Modern Chemical Industry, 2021, 41(3): 83-87. | |
59 | Ghosh U K, Pradhan N C, Adhikari B. Pervaporative recovery of N-methyl-2-pyrrolidone from dilute aqueous solution by using polyurethaneurea membranes[J]. Journal of Membrane Science, 2006, 285(1/2): 249-257. |
60 | Shao F F, Hao C Q, Ni L, et al. Experimental and theoretical research on N-methyl-2-pyrrolidone concentration by vacuum membrane distillation using polypropylene hollow fiber membrane[J]. Journal of Membrane Science, 2014, 452: 157-164. |
61 | van Veen H M, Rietkerk M D A, Shanahan D P, et al. Pushing membrane stability boundaries with HybSi® pervaporation membranes[J]. Journal of Membrane Science, 2011, 380(1/2): 124-131. |
62 | Sato K, Sugimoto K, Shimotsuma N, et al. Development of practically available up-scaled high-silica CHA-type zeolite membranes for industrial purpose in dehydration of N-methyl pyrrolidone solution[J]. Journal of Membrane Science, 2012, 409/410: 82-95. |
63 | Tsai H A, Chen Y L, Lee K R, et al. Preparation of heat-treated PAN hollow fiber membranes for pervaporation of NMP/H2O mixtures[J]. Separation and Purification Technology, 2012, 100: 97-105. |
64 | Sunitha K, Yamuna Rani K, Moulik S, et al. Separation of NMP/water mixtures by nanocomposite PEBA membrane(part I): Membrane synthesis, characterization and pervaporation performance[J]. Desalination, 2013, 330: 1-8. |
65 | 王思琪, 顾天宇, 陈献富, 等. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
Wang S Q, Gu T Y, Chen X F, et al. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of eucommia ulmoides leaves extract[J]. CIESC Journal, 2023, 74(3): 1113-1125. | |
66 | Prasad N S, Moulik S, Bohra S, et al. Solvent resistant chitosan/poly(ether-block-amide) composite membranes for pervaporation of n-methyl-2-pyrrolidone/water mixtures[J]. Carbohydrate Polymers, 2016, 136: 1170-1181. |
67 | Kang S K, Park J W, Tsegay Tikue E, et al. Self-cross-linking nanocomposite membranes for green recycling of the solvent during lithium-ion battery manufacturing[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(2): 899-910. |
68 | 王艳芳, 毛恒, 蔡玮玮, 等. ZIF-L/PDMS混合基质膜蒸气渗透耦合发酵强化乙醇生产效率的研究[J]. 化工学报, 2021, 72(10): 5226-5236. |
Wang Y F, Mao H, Cai W W, et al. Enhancing ethanol production efficiency by ZIF-L/PDMS mixed matrix membrane via vapor permeation-fermentation coupling process[J]. CIESC Journal, 2021, 72(10): 5226-5236. | |
69 | 宋振, 茅慧萍, 蒋旭亮, 等. N-甲基吡咯烷酮中去除甲胺和水分的方法: 101973921A[P]. 2011-02-16. |
Song Z, Mao H P, Jiang X L, et al. Method for removing methylamine and moisture in N-methyl pyrrolidone: 101973921A[P]. 2011-02-16. | |
70 | 曾文豪. NaA分子筛膜的渗透汽化应用及其污染与再生研究[D]. 宁波: 宁波大学, 2020. |
Zeng W H. The research on pervaporative applications, fouling and regeneration of NaA zeolite membrane[D]. Ningbo: Ningbo University, 2020. | |
71 | 顾学红, 仲超, 洪周, 等. 一种膜分离法回收锂电池生产中N-甲基吡咯烷酮废气的方法和装置: 107626186A[P]. 2019-11-01. |
Gu X H, Zhong C, Hong Z, et al. Method and device for recovering NMP (N-methyl pyrrolidone) waste gas in lithium battery production with membrane separation method: 107626186A[P]. 2019-11-01. | |
72 | 李伟, 李辉, 张伟, 等. 一种渗透汽化膜分离精制NMP装置: 214004476U[P]. 2021-08-20. |
Li W, Li H, Zhang W, et al. Device for separating and refining NMP through pervaporation membrane: 214004476U[P]. 2021-08-20. | |
73 | Zeng W H, Li B B, Li H, et al. Mass produced NaA zeolite membranes for pervaporative recycling of spent N-methyl-2-pyrrolidone in the manufacturing process for lithium-ion battery[J]. Separation and Purification Technology, 2019, 228: 115741. |
74 | 李安武, 熊纯刚. 一种N-甲基吡咯烷酮的回收方法: 110759844A[P]. 2020-02-07. |
Li A W, Xiong C G. A recovery method for 1-methyl-2-Pyrrolidone: 110759844A[P]. 2020-02-07. | |
75 | 郑晓舟, 刘建楠, 迪建东, 等. 由一条工艺路线浅谈NMP的回收[J]. 广东化工, 2020, 47(2): 89-90. |
Zheng X Z, Liu J N, Di J D, et al. A brief discussion of NMP recovery based on one method of processes[J]. Guangdong Chemical Industry, 2020, 47(2): 89-90. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[3] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[6] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[7] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[8] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[11] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[12] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[13] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[14] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[15] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 491
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 481
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||