CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4320-4332.DOI: 10.11949/0438-1157.20240585
• Process system engineering • Previous Articles Next Articles
Maoxian WANG1(), Qidian SUN1, Zhe FU1, Fang HUA1, Ye JI2, Yi CHENG1(
)
Received:
2024-05-30
Revised:
2024-07-12
Online:
2024-12-26
Published:
2024-11-25
Contact:
Yi CHENG
王茂先1(), 孙启典1, 付哲1, 华放1, 纪晔2, 程易1(
)
通讯作者:
程易
作者简介:
王茂先(2001—),男,博士研究生,wangmx23@mails.tsinghua.edu.cn
基金资助:
CLC Number:
Maoxian WANG, Qidian SUN, Zhe FU, Fang HUA, Ye JI, Yi CHENG. Understanding pyrolysis process of polyethylene by combined method of molecular-level kinetic model with machine learning[J]. CIESC Journal, 2024, 75(11): 4320-4332.
王茂先, 孙启典, 付哲, 华放, 纪晔, 程易. 分子水平动力学模型和机器学习方法相结合研究废弃塑料热解[J]. 化工学报, 2024, 75(11): 4320-4332.
编号 | a | b | c | d | f | M | nums | numn | numr |
---|---|---|---|---|---|---|---|---|---|
1 | 11 | 64 | 12.00 | 100 | 6.45×10-4 | 31024 | 1000 | 3142 | 42932 |
2 | 12 | 64 | 12.50 | 100 | 2.89×10-4 | 69216 | 1500 | 6342 | 87732 |
3 | 12.2 | 64 | 12.46 | 100 | 1.43×10-4 | 140112 | 2000 | 11998 | 166916 |
4 | 12.5 | 64 | 12.82 | 100 | 1.09×10-4 | 183792 | 3000 | 15998 | 222916 |
5 | 14.5 | 64 | 14.83 | 100 | 7.70×10-5 | 259672 | 4500 | 22998 | 320916 |
6 | 25 | 64 | 25.30 | 100 | 5.51×10-5 | 362992 | 6000 | 31998 | 446916 |
7 | 0.24 | 64 | 0.30 | 100 | 2.89×10-4 | 69202 | 200 | 5128 | 70736 |
8 | 5 | 64 | 5.23 | 100 | 2.89×10-4 | 69199 | 800 | 5662 | 78212 |
9 | 50 | 64 | 50.76 | 100 | 2.89×10-4 | 69213 | 2000 | 6840 | 94704 |
10 | 150 | 64 | 151.70 | 100 | 2.89×10-4 | 69223 | 3000 | 7856 | 108928 |
11 | 600 | 64 | 604.00 | 100 | 2.89×10-4 | 69142 | 4500 | 10000 | 138944 |
12 | 1600 | 64 | 1607.35 | 100 | 2.89×10-4 | 69190 | 6000 | 12598 | 175316 |
Table 1 Molecular weight distribution parameters of PE raw materials
编号 | a | b | c | d | f | M | nums | numn | numr |
---|---|---|---|---|---|---|---|---|---|
1 | 11 | 64 | 12.00 | 100 | 6.45×10-4 | 31024 | 1000 | 3142 | 42932 |
2 | 12 | 64 | 12.50 | 100 | 2.89×10-4 | 69216 | 1500 | 6342 | 87732 |
3 | 12.2 | 64 | 12.46 | 100 | 1.43×10-4 | 140112 | 2000 | 11998 | 166916 |
4 | 12.5 | 64 | 12.82 | 100 | 1.09×10-4 | 183792 | 3000 | 15998 | 222916 |
5 | 14.5 | 64 | 14.83 | 100 | 7.70×10-5 | 259672 | 4500 | 22998 | 320916 |
6 | 25 | 64 | 25.30 | 100 | 5.51×10-5 | 362992 | 6000 | 31998 | 446916 |
7 | 0.24 | 64 | 0.30 | 100 | 2.89×10-4 | 69202 | 200 | 5128 | 70736 |
8 | 5 | 64 | 5.23 | 100 | 2.89×10-4 | 69199 | 800 | 5662 | 78212 |
9 | 50 | 64 | 50.76 | 100 | 2.89×10-4 | 69213 | 2000 | 6840 | 94704 |
10 | 150 | 64 | 151.70 | 100 | 2.89×10-4 | 69223 | 3000 | 7856 | 108928 |
11 | 600 | 64 | 604.00 | 100 | 2.89×10-4 | 69142 | 4500 | 10000 | 138944 |
12 | 1600 | 64 | 1607.35 | 100 | 2.89×10-4 | 69190 | 6000 | 12598 | 175316 |
模型 | 训练集 | 测试集 | ||||||
---|---|---|---|---|---|---|---|---|
数据量 | R2 | MAE | RMSE | 数据量 | R2 | MAE | RMSE | |
KNN | 28800 | 1.0000 | 0.0025 | 0.0605 | 7200 | 1.0000 | 0.0012 | 0.0065 |
RF | 28800 | 0.9997 | 0.0898 | 0.2101 | 7200 | 0.9997 | 0.0972 | 0.1918 |
ANN | 28800 | 0.9993 | 0.1172 | 0.3426 | 7200 | 0.9995 | 0.1250 | 0.2426 |
MLP | 28800 | 0.9975 | 0.4786 | 0.6282 | 7200 | 0.9974 | 0.4586 | 0.5458 |
XGB | 28800 | 0.9967 | 0.3878 | 0.7228 | 7200 | 0.9930 | 0.5038 | 0.8921 |
GBDT | 28800 | 0.9896 | 0.6642 | 1.2810 | 7200 | 0.9789 | 0.7746 | 1.5457 |
DT | 28800 | 0.9832 | 0.6344 | 1.6254 | 7200 | 0.9775 | 0.6009 | 1.5949 |
LGB | 28800 | 0.9846 | 0.8916 | 1.5563 | 7200 | 0.9733 | 1.0540 | 1.7362 |
SVR | 28800 | 0.8597 | 1.3971 | 4.6972 | 7200 | 0.7283 | 1.9827 | 5.5417 |
LR | 28800 | 0.4849 | 6.9920 | 9.0008 | 7200 | 0.3077 | 6.4794 | 8.8453 |
Table 2 Performance evaluation of machine learning models for light oil product yield prediction
模型 | 训练集 | 测试集 | ||||||
---|---|---|---|---|---|---|---|---|
数据量 | R2 | MAE | RMSE | 数据量 | R2 | MAE | RMSE | |
KNN | 28800 | 1.0000 | 0.0025 | 0.0605 | 7200 | 1.0000 | 0.0012 | 0.0065 |
RF | 28800 | 0.9997 | 0.0898 | 0.2101 | 7200 | 0.9997 | 0.0972 | 0.1918 |
ANN | 28800 | 0.9993 | 0.1172 | 0.3426 | 7200 | 0.9995 | 0.1250 | 0.2426 |
MLP | 28800 | 0.9975 | 0.4786 | 0.6282 | 7200 | 0.9974 | 0.4586 | 0.5458 |
XGB | 28800 | 0.9967 | 0.3878 | 0.7228 | 7200 | 0.9930 | 0.5038 | 0.8921 |
GBDT | 28800 | 0.9896 | 0.6642 | 1.2810 | 7200 | 0.9789 | 0.7746 | 1.5457 |
DT | 28800 | 0.9832 | 0.6344 | 1.6254 | 7200 | 0.9775 | 0.6009 | 1.5949 |
LGB | 28800 | 0.9846 | 0.8916 | 1.5563 | 7200 | 0.9733 | 1.0540 | 1.7362 |
SVR | 28800 | 0.8597 | 1.3971 | 4.6972 | 7200 | 0.7283 | 1.9827 | 5.5417 |
LR | 28800 | 0.4849 | 6.9920 | 9.0008 | 7200 | 0.3077 | 6.4794 | 8.8453 |
16 | Westerhout R W J, Kuipers J A M, van Swaaij W P M. Experimental determination of the yield of pyrolysis products of polyethene and polypropene. Influence of reaction conditions[J]. Industrial & Engineering Chemistry Research, 1998, 37(3): 841-847. |
17 | Onwudili J A, Insura N, Williams P T. Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: effects of temperature and residence time[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 293-303. |
18 | Chen D Z, Yin L J, Wang H, et al. Pyrolysis technologies for municipal solid waste: a review[J]. Waste Management, 2014, 34(12): 2466-2486. |
19 | Bagri R, Williams P T. Catalytic pyrolysis of polyethylene[J]. Journal of Analytical and Applied Pyrolysis, 2002, 63(1): 29-41. |
20 | Ratnasari D K, Nahil M A, Williams P T. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 631-637. |
21 | Achilias D S, Roupakias C, Megalokonomos P, et al. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP)[J]. Journal of Hazardous Materials, 2007, 149(3): 536-542. |
22 | 张雪, 白雪峰, 赵明. 废塑料热解特性研究[J]. 化学与粘合, 2015, 37(2): 107-110. |
Zhang X, Bai X F, Zhao M. Study on pyrolysis characteristics of waste plastics[J]. Chemistry and Adhesion, 2015, 37(2): 107-110. | |
23 | Zhao D T, Wang X H, Miller J B, et al. The chemistry and kinetics of polyethylene pyrolysis: a process to produce fuels and chemicals[J]. ChemSusChem, 2020, 13(7): 1764-1774. |
24 | Li J, Yu D, Pan L J, et al. Recent advances in plastic waste pyrolysis for liquid fuel production: critical factors and machine learning applications[J]. Applied Energy, 2023, 346: 121350. |
25 | Prasertpong P, Onsree T, Khuenkaeo N, et al. Exposing and understanding synergistic effects in co-pyrolysis of biomass and plastic waste via machine learning[J]. Bioresource Technology, 2023, 369: 128419. |
26 | Belden E R, Rando M, Ferrara O G, et al. Machine learning predictions of oil yields obtained by plastic pyrolysis and application to thermodynamic analysis[J]. ACS Engineering Au, 2022, 3(2): 91-101. |
1 | Meijer L J J, van Emmerik T, van der Ent R, et al. More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean[J]. Science Advances, 2021, 7(18): eaaz5803. |
2 | Nielsen T D, Hasselbalch J, Holmberg K, et al. Politics and the plastic crisis: a review throughout the plastic life cycle[J]. Wiley Interdisciplinary Reviews: Energy and Environment, 2020, 9(1): e360. |
3 | Bahij S, Omary S, Feugeas F, et al. Fresh and hardened properties of concrete containing different forms of plastic waste—a review[J]. Waste Management, 2020, 113: 157-175. |
4 | Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
5 | Groh K J, Backhaus T, Carney-Almroth B, et al. Overview of known plastic packaging-associated chemicals and their hazards[J]. Science of the Total Environment, 2019, 651: 3253-3268. |
6 | Al-Salem S M, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): a review[J]. Waste Management, 2009, 29(10): 2625-2643. |
7 | van Geem K M. Plastic waste recycling is gaining momentum[J]. Science, 2023, 381(6658): 607-608. |
8 | Rajesh Banu J, Godvin Sharmila V. A systematic review on plastic waste conversion for a circular economy: recent trends and emerging technologies[J]. Catalysis Science & Technology, 2023, 13(8): 2291-2302. |
9 | 胡延庆, 胡凡, 周剑池, 等. 废弃塑料回收与转化的研究进展[J]. 中国塑料, 2024, 38(4): 79-87. |
Hu Y Q, Hu F, Zhou J C, et al. Research progress in upcycling of waste plastics[J]. China Plastics, 2024, 38(4): 79-87. | |
10 | Anuar Sharuddin S D, Abnisa F, Wan Daud W M A, et al. A review on pyrolysis of plastic wastes[J]. Energy Conversion and Management, 2016, 115: 308-326. |
11 | Maqsood T, Dai J Z, Zhang Y N, et al. Pyrolysis of plastic species: a review of resources and products[J]. Journal of Analytical and Applied Pyrolysis, 2021, 159: 105295. |
12 | Dave P N, Joshi A K. Plasma pyrolysis and gasification of plastics waste—a review[J]. Journal of Scientific & Industrial Research, 2010, 69(3): 177-179. |
13 | Solowski G, Shalaby M, Özdemir F A. Plastic and waste tire pyrolysis focused on hydrogen production—a review[J]. Hydrogen, 2022, 3(4): 531-549. |
14 | 孙艺蕾, 马跃, 李术元, 等. 聚烯烃塑料的热解和催化热解研究进展[J]. 化工进展, 2021, 40(5): 2784-2801. |
Sun Y L, Ma Y, Li S Y, et al. Research progress in the pyrolysis and catalytic pyrolysis of waste polyolefin plastics[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2784-2801. | |
15 | Singh S, Patil T, Tekade S P, et al. Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis[J]. Science of the Total Environment, 2021, 783: 147004. |
27 | Cheng Y, Ekici E, Yildiz G, et al. Applied machine learning for prediction of waste plastic pyrolysis towards valuable fuel and chemicals production[J]. Journal of Analytical and Applied Pyrolysis, 2023, 169: 105857. |
28 | Armenise S, Wong S, Ramírez-Velásquez J M, et al. Application of computational approach in plastic pyrolysis kinetic modelling: a review[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134(2): 591-614. |
29 | Hua F, Fu Z, Yang S Q, et al. Simulating polyethylene pyrolysis from a generalized molecular-level kinetic model[J]. Journal of Analytical and Applied Pyrolysis, 2023, 170: 105913. |
30 | Fu Z, Sun Q D, Hua F, et al. A molecular-level kinetic model for the primary and secondary reactions of polypropylene pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2023, 175: 106182. |
31 | Quann R J, Jaffe S B. Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures[J]. Industrial & Engineering Chemistry Research, 1992, 31(11): 2483-2497. |
32 | Ghosh P, Jaffe S B. Detailed composition-based model for predicting the cetane number of diesel fuels[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 346-351. |
33 | Ghosh P, Chawla B, Joshi P V, et al. Prediction of chromatographic retention times for aromatic hydrocarbons[J]. Energy & Fuels, 2006, 20(2): 609-619. |
34 | 王睿通, 刘纪昌, 仲从伟, 等. 基于结构导向集总的催化重整分子水平反应动力学模型[J]. 石油学报(石油加工), 2020, 36(1): 95-105. |
Wang R T, Liu J C, Zhong C W, et al. Reaction kinetic model for catalytic reforming based on structure oriented lumping[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 95-105. | |
35 | Hua F, Fu Z, Cheng Y. A simplified and effective molecular-level kinetic model for plastic pyrolysis [J]. Chemical Engineering Science, 2022, 264: 118146. |
36 | Dubdub I, Al-Yaari M. Pyrolysis of low density polyethylene: kinetic study using TGA data and ANN prediction[J]. Polymers, 2020, 12(4): 891. |
[1] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[2] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[3] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
[4] | Angran ZHAO, Yongqiang HAN, Zhipeng WANG, Pengfei LI, Yawei XU, Huiling TONG. Experimental study on simultaneous desulfurization and denitrification of red mud at low temperature [J]. CIESC Journal, 2024, 75(S1): 276-282. |
[5] | Yingyu XU, Guoqiang YANG, Jing PENG, Haining SUN, Zhibing ZHANG. Research on advanced oxidation treatment of coal chemical wastewater using microinterfaces [J]. CIESC Journal, 2024, 75(S1): 283-291. |
[6] | Xinyue WANG, Xiaohu XU, Haiyang ZHANG, Chunhua YIN. Study on encapsulation and properties vitamin A acetate/cyclodextrin [J]. CIESC Journal, 2024, 75(S1): 321-328. |
[7] | Zhangzhou WANG, Tianqi TANG, Jiajun XIA, Yurong HE. Battery thermal management performance simulation based on composite phase change material [J]. CIESC Journal, 2024, 75(S1): 329-338. |
[8] | Jian HU, Jinghua JIANG, Shengjun FAN, Jianhao LIU, Haijiang ZOU, Wanlong CAI, Fenghao WANG. Research on heat extraction performance of deep U-type borehole heat exchanger [J]. CIESC Journal, 2024, 75(S1): 76-84. |
[9] | Yi ZHONG, Shiyu ZHOU, Lianchao JIU, Yuxiao LI, Haojiang WU, Zhiyong ZHOU. Research progress on direct remediation and regeneration of cathode materials from spent lithium iron phosphate batteries [J]. CIESC Journal, 2024, 75(S1): 1-13. |
[10] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
[11] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[12] | Junhao HUANG, Keliang PANG, Fangyuan SUN, Fujun LIU, Zhiyuan GU, Long HAN, Yanquan DUAN, Yanhui FENG. Influence of bell structure of coke dry quenching furnace on coke distribution [J]. CIESC Journal, 2024, 75(S1): 158-169. |
[13] | Wenfang GAO, Han CUI, Yiran SUN, Jiaqing PENG, Rui ZHU, Ran XIA, Xinyu ZHANG, Jiaqi LI, Xueliang WANG, Zhi SUN, Longyi LYU. A critical review on environmental impact assessment of typical metal production processes [J]. CIESC Journal, 2024, 75(9): 3056-3073. |
[14] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
[15] | Zhengliang HUANG, Mingrui FENG, Qi SONG, Congjing REN, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Inhibitory effect of premixed feedstock on particle agglomeration in fluidized pyrolysis reaction of waste resin [J]. CIESC Journal, 2024, 75(9): 3094-3102. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 356
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 201
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||