CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 967-973.DOI: 10.11949/0438-1157.20231248
• Energy and environmental engineering • Previous Articles Next Articles
Pei WANG1(), Ruiming DUAN1, Guangru ZHANG2, Wanqin JIN2
Received:
2023-12-01
Revised:
2024-01-08
Online:
2024-05-11
Published:
2024-03-25
Contact:
Pei WANG
通讯作者:
王沛
作者简介:
王沛(1986—),男,博士,教授,franciswp2012@163.com
基金资助:
CLC Number:
Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process[J]. CIESC Journal, 2024, 75(3): 967-973.
王沛, 段睿明, 张广儒, 金万勤. 光热驱动的膜分离生物甲烷制氢过程建模与仿真分析[J]. 化工学报, 2024, 75(3): 967-973.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
反应器直径/mm | 70 |
多孔SiC厚度/mm | 50 |
透氧膜外径/mm | 5 |
透氧膜内径/mm | 4 |
透氧膜长度/mm | 45 |
多孔SiC与透氧膜的距离/mm | 5 |
透氧膜距反应器轴线距离/mm | 20 |
Table 1 Main geometric dimensions of reactor
参数 | 数值 |
---|---|
反应器直径/mm | 70 |
多孔SiC厚度/mm | 50 |
透氧膜外径/mm | 5 |
透氧膜内径/mm | 4 |
透氧膜长度/mm | 45 |
多孔SiC与透氧膜的距离/mm | 5 |
透氧膜距反应器轴线距离/mm | 20 |
参数 | 公式 |
---|---|
正向反应速率常数/(cm/(atm0.5⋅s)) | |
逆向反应速率常数/(mol/(cm2⋅s)) | |
氧空位的扩散系数/(cm2/s) |
Table 2 Parameters of reaction kinetics
参数 | 公式 |
---|---|
正向反应速率常数/(cm/(atm0.5⋅s)) | |
逆向反应速率常数/(mol/(cm2⋅s)) | |
氧空位的扩散系数/(cm2/s) |
边界条件 | 数值 |
---|---|
入射太阳辐射/W | 4924 |
入口空气压力/atm | 1 |
入口空气流速/(m/s) | 1 |
入口空气温度/℃ | 28.5 |
入口空气中O2质量分数 | 0.21 |
入口CH4压力/atm | 1 |
入口CH4流速/(m/s) | 0.2 |
入口CH4温度/℃ | 20 |
入口CH4中O2质量分数 | 10-6 |
Table 3 Boundary conditions of reactor
边界条件 | 数值 |
---|---|
入射太阳辐射/W | 4924 |
入口空气压力/atm | 1 |
入口空气流速/(m/s) | 1 |
入口空气温度/℃ | 28.5 |
入口空气中O2质量分数 | 0.21 |
入口CH4压力/atm | 1 |
入口CH4流速/(m/s) | 0.2 |
入口CH4温度/℃ | 20 |
入口CH4中O2质量分数 | 10-6 |
方案 | 网格数/个 | 出口H2的平均 摩尔分数/% | 出口CO的平均 摩尔分数/% |
---|---|---|---|
1 | 34333 | 20.197 | 29.636 |
2 | 57340 | 20.503 | 30.123 |
3 | 84870 | 20.512 | 30.134 |
Table 4 Grid independence test schemes
方案 | 网格数/个 | 出口H2的平均 摩尔分数/% | 出口CO的平均 摩尔分数/% |
---|---|---|---|
1 | 34333 | 20.197 | 29.636 |
2 | 57340 | 20.503 | 30.123 |
3 | 84870 | 20.512 | 30.134 |
温度/℃ | SCO/% | H2/CO | |||||||
---|---|---|---|---|---|---|---|---|---|
实验 | Jin模型 | 本文模型 | 实验 | Jin模型 | 本文模型 | 实验 | Jin模型 | 本文模型 | |
825 | 97.3 | 97.2 | 97.2 | 97 | 98.9 | 97.7 | 1.69 | 2 | 1.66 |
850 | 100 | 99.7 | 99.4 | 100 | 97.9 | 97.2 | 1.68 | 2 | 1.62 |
885 | 96.7 | 100 | 99.8 | 98 | 97.8 | 97.2 | 1.96 | 2 | 1.87 |
Table 5 Accuracy validation of model
温度/℃ | SCO/% | H2/CO | |||||||
---|---|---|---|---|---|---|---|---|---|
实验 | Jin模型 | 本文模型 | 实验 | Jin模型 | 本文模型 | 实验 | Jin模型 | 本文模型 | |
825 | 97.3 | 97.2 | 97.2 | 97 | 98.9 | 97.7 | 1.69 | 2 | 1.66 |
850 | 100 | 99.7 | 99.4 | 100 | 97.9 | 97.2 | 1.68 | 2 | 1.62 |
885 | 96.7 | 100 | 99.8 | 98 | 97.8 | 97.2 | 1.96 | 2 | 1.87 |
1 | Bayon A, de la Calle A, Ghose K K, et al. Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: a review[J]. International Journal of Hydrogen Energy, 2020, 45(23): 12653-12679. |
2 | Wang P, Wei R K, Vafai K. A dual-scale transport model of the porous ceria based on solar thermochemical cycle water splitting hydrogen production[J]. Energy Conversion and Management, 2022, 272: 116363. |
3 | 邢卫红, 汪勇, 陈日志, 等. 膜与膜反应器: 现状、挑战与机遇[J]. 中国科学: 化学, 2014, 44(9): 1469-1481. |
Xing W H, Wang Y, Chen R Z, et al. Membranes and membrane reactors: state of the art, challenges, and opportunities[J]. Scientia Sinica Chimica, 2014, 44(9): 1469-1481. | |
4 | Wang Z G, Chen T J, Dewangan N, et al. Catalytic mixed conducting ceramic membrane reactors for methane conversion[J]. Reaction Chemistry & Engineering, 2020, 5(10): 1868-1891. |
5 | Dong X L, Jin W Q, Xu N P, et al. Dense ceramic catalyticmembranes and membrane reactors for energy and environmental applications[J]. Chemical Communications, 2011, 47(39): 10886-10902. |
6 | 金万勤, 徐南平. 混合导体透氧膜材料的设计与应用[J]. 化工进展, 2006, 25(10): 1143-1151. |
Jin W Q, Xu N P. Design and application of oxygen-permeable membrane materials of mixed conducting oxides[J]. Chemical Industry and Engineering Progress, 2006, 25(10): 1143-1151. | |
7 | Jin W, Gu X, Li S, et al. Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas[J]. Chemical Engineering Science, 2000, 55(14): 2617-2625. |
8 | Jiang K P, Liu Z K, Zhang G R, et al. A novel catalytic membrane reactor with homologous exsolution-based perovskite catalyst[J]. Journal of Membrane Science, 2020, 608: 118213. |
9 | Zhu J W, Guo S B, Liu G P, et al. A robust mixed-conducting multichannel hollow fiber membrane reactor[J]. AIChE Journal, 2015, 61(8): 2592-2599. |
10 | Wang H S, Liu M K, Kong H, et al. Thermodynamic analysis on mid/low temperature solar methane steam reforming with hydrogen permeation membrane reactors[J]. Applied Thermal Engineering, 2019, 152: 925-936. |
11 | Wang B Z, Kong H, Wang H S, et al. Kinetic and thermodynamic analyses of mid/low-temperature ammonia decomposition in solar-driven hydrogen permeation membrane reactor[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26874-26887. |
12 | Wang X C, Wang B Z, Wang M, et al. Cyclohexane dehydrogenation in solar-driven hydrogen permeation membrane reactor for efficient solar energy conversion and storage[J]. Journal of Thermal Science, 2021, 30(5): 1548-1558. |
13 | Kalogirou S A. Solar thermal collectors and applications[J]. Progress in Energy and Combustion Science, 2004, 30(3): 231-295. |
14 | Tou M, Michalsky R, Steinfeld A. Solar-driven thermochemical splitting of CO2 and in situ separation of CO and O2 across a ceria redox membrane reactor[J]. Joule, 2017, 1(1): 146-154. |
15 | Tou M, Jin J, Hao Y, et al. Solar-driven co-thermolysis of CO2 and H2O promoted by in situ oxygen removal across a non-stoichiometric ceria membrane[J]. Reaction Chemistry & Engineering, 2019, 4(8): 1431-1438. |
16 | Hosseini S E, Wahid M A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy[J]. International Journal of Energy Research, 2020, 44(6): 4110-4131. |
17 | 王沛, 李嘉宝, 赵亮, 等. 塔式太阳能熔盐吸热器传热特性及㶲分析[J]. 中国电机工程学报, 2019, 39(12): 3605-3614. |
Wang P, Li J B, Zhao L, et al. Thermal and exergy performance of molten salt external cylindrical receiver of solar power towers[J]. Proceedings of the CSEE, 2019, 39(12): 3605-3614. | |
18 | Song H, Luo S Q, Huang H M, et al. Solar-driven hydrogen production: recent advances, challenges, and future perspectives[J]. ACS Energy Letters, 2022, 7(3): 1043-1065. |
19 | 王沛, 李嘉宝, 周领, 等. 太阳能热化学反应器多场耦合及协同优化研究[J]. 太阳能学报, 2022, 43(9): 527-534. |
Wang P, Li J B, Zhou L, et al. Multi-field coupling modeling and cooperative optimization of solar thermal chemical reactor[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 527-534. | |
20 | Wang P, Li J B, Xu R N, et al. Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber[J]. Energy, 2021, 225: 120130. |
21 | Li J B, Wang P, Liu D Y. Optimization on the gradually varied pore structure distribution for the irradiated absorber[J]. Energy, 2022, 240: 122787. |
22 | Wu Z Y, Caliot C, Bai F W, et al. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications[J]. Applied Energy, 2010, 87(2): 504-513. |
23 | Wu Z Y, Caliot C, Flamant G, et al. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances[J]. International Journal of Heat and Mass Transfer, 2011, 54(7/8): 1527-1537. |
24 | Wang P, Vafai K, Liu D Y, et al. Analysis of collimated irradiation under local thermal non-equilibrium condition in a packed bed[J]. International Journal of Heat and Mass Transfer, 2015, 80: 789-801. |
25 | Hendricks T J, Howell J R. Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics[J]. Journal of Heat Transfer, 1996, 118(1): 79-87. |
26 | Tan X Y, Li K. Modeling of air separation in a LSCF hollow-fiber membrane module[J]. AIChE Journal, 2002, 48(7): 1469-1477. |
27 | Xu S J, Thomson W J. Oxygen permeation rates through ion-conducting perovskite membranes[J]. Chemical Engineering Science, 1999, 54(17): 3839-3850. |
28 | Tsai C Y. Perovskite dense membrane reactors for the partial oxidation of methane to synthesis gas[D]. Worcester: Worcester Polytechnic Institute, 1996. |
29 | Blanks R F, Wittrig T S, Peterson D A. Bidirectional adiabatic synthesis gas generator[J]. Chemical Engineering Science, 1990, 45(8): 2407-2413. |
30 | Habib M A, Haque M A, Harale A, et al. Palladium-alloy membrane reactors for fuel reforming and hydrogen production: hydrogen production modeling[J]. Case Studies in Thermal Engineering, 2023, 49: 103359. |
[1] | Yibin DONG, Jingchao XIONG, Jingyu WANG, Shoukang WANG, Yafei WANG, Qunxing HUANG. LiDAR measurement based on model predictive control for boiler combustion optimization [J]. CIESC Journal, 2024, 75(3): 924-935. |
[2] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
[3] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
[4] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[5] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[6] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[7] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[8] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[9] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[10] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[11] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[12] | Xiaowen ZHOU, Jie DU, Zhanguo ZHANG, Guangwen XU. Study on the methane-pulsing reduction characteristics of Fe2O3-Al2O3 oxygen carrier [J]. CIESC Journal, 2023, 74(6): 2611-2623. |
[13] | Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation [J]. CIESC Journal, 2023, 74(6): 2458-2467. |
[14] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[15] | Yue SONG, Qicheng ZHANG, Wenchao PENG, Yang LI, Fengbao ZHANG, Xiaobin FAN. Synthesis of MoS2-based single atom catalyst and its application in electrocatalysis [J]. CIESC Journal, 2023, 74(2): 535-545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||