CIESC Journal ›› 2024, Vol. 75 ›› Issue (3): 967-973.DOI: 10.11949/0438-1157.20231248

• Energy and environmental engineering • Previous Articles     Next Articles

Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process

Pei WANG1(), Ruiming DUAN1, Guangru ZHANG2, Wanqin JIN2   

  1. 1.Engineering Research Center of Renewable Power Generation Technologies, Ministry of Education, Nanjing 210098, Jiangsu, China
    2.State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
  • Received:2023-12-01 Revised:2024-01-08 Online:2024-05-11 Published:2024-03-25
  • Contact: Pei WANG

光热驱动的膜分离生物甲烷制氢过程建模与仿真分析

王沛1(), 段睿明1, 张广儒2, 金万勤2   

  1. 1.可再生能源发电技术教育部工程研究中心,江苏 南京 210098
    2.南京工业大学材料化学工程国家重点实验室,江苏 南京 211816
  • 通讯作者: 王沛
  • 作者简介:王沛(1986—),男,博士,教授,franciswp2012@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFE0101600);国家自然科学基金重点项目(U2243243);可再生能源与智能电网“111”项目(B14022)

Abstract:

Solar-driven methane reforming for hydrogen production is one of the main technological pathways for solar fuels. The introduction of concentrating heat collection technology can realize the full spectrum utilization of solar energy, effectively improve the conversion efficiency of solar energy to fuel chemical energy, and significantly reduce system energy consumption. In this study, a novel design for solar-driven membrane reactor was proposed for hydrogen production by combining porous silicon carbide absorber and La1-x Sr x Co1-y Fe y O3-δ perovskite oxygen permeable membrane. The conceptual design of the reaction process was made, and a numerical model considering radiation heat transfer membrane separation reaction was established and simulated. The temperature uniformity of the membrane surface was evaluated, and the influence of temperature on the membrane reaction and outlet products was analyzed. The results demonstrate that this model can effectively and accurately describe the conceptual design process. The findings provide a theoretical basis and initial design approach for the design and scale-up of solar-driven high-temperature membrane reactors.

Key words: dynamic modeling, dynamic simulation, solar energy, methane partial oxidation, hydrogen production, oxygen permeable membrane, conceptual design

摘要:

光热驱动的甲烷重整制氢技术,是将太阳能转化为燃料的主要技术路径之一。引入聚光集热技术,可实现太阳能的全光谱利用,有效提高太阳能到燃料化学能的转化效率,同时显著降低系统能耗及碳排放。将多孔碳化硅吸热体和La1-x Sr x Co1-y Fe y O3-δ 钙钛矿透氧膜结合,提出一种光热驱动的膜反应制氢的设计思路,实现了连续、高效的制氢过程。完成了该反应过程的概念设计,建立考虑辐射-传热-膜分离-反应的数值模型并进行仿真模拟;重点评估了膜表面的温度均匀性,并分析温度对膜内反应及出口产物的影响规律。结果表明,该模型可以有效精准描述概念设计过程。研究成果可为光热驱动的高温膜反应器设计和放大提供理论依据以及初步设计方法。

关键词: 动态建模, 动态仿真, 太阳能, 甲烷部分氧化, 制氢, 透氧膜, 概念设计

CLC Number: