CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5101-5113.DOI: 10.11949/0438-1157.20250364
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yun SHEN1,2(
), Dai ZHANG2, Xiaofeng XU1, Yueqiang CAO1,2(
), Jinghong ZHOU1,2(
), Wei LI2, Xinggui ZHOU1,2
Received:2025-04-09
Revised:2025-05-14
Online:2025-11-25
Published:2025-10-25
Contact:
Yueqiang CAO, Jinghong ZHOU
沈赟1,2(
), 张岱2, 徐晓峰1, 曹约强1,2(
), 周静红1,2(
), 李伟2, 周兴贵1,2
通讯作者:
曹约强,周静红
作者简介:沈赟(2000—),男,硕士研究生,shenyun0902@163.com
基金资助:CLC Number:
Yun SHEN, Dai ZHANG, Xiaofeng XU, Yueqiang CAO, Jinghong ZHOU, Wei LI, Xinggui ZHOU. Mechanistic insights into the hydrogenation of dimethyl oxalate to methyl glycolate over Ni-Ag/SiO2 catalyst[J]. CIESC Journal, 2025, 76(10): 5101-5113.
沈赟, 张岱, 徐晓峰, 曹约强, 周静红, 李伟, 周兴贵. Ni-Ag/SiO2催化草酸二甲酯加氢制乙醇酸甲酯反应机理研究[J]. 化工学报, 2025, 76(10): 5101-5113.
Add to citation manager EndNote|Ris|BibTeX
| 样品 | 负载量①/% | SBET② / (m2/g) | Vpore③/ (cm3/g) | DBJH③/ nm | QCO④/ (mmol/g) | (mmol/g) | (mmol/g) | |
|---|---|---|---|---|---|---|---|---|
| Ni | Ag | |||||||
| SiO2 | — | — | 212 | 0.30 | 4.4 | — | — | — |
| 5Ni-1Ag | 4.6 | 0.98 | 247 | 0.61 | 8.24 | 0.0027 | 0.1241 | 0.1214 |
| 10Ni-1Ag | 9.8 | 0.98 | 267 | 0.58 | 7.00 | 0.0064 | 0.1289 | 0.1225 |
| 15Ni-1Ag | 14.7 | 0.97 | 285 | 0.54 | 5.90 | 0.0102 | 0.1344 | 0.1242 |
| 10Ni-1.5Ag | 9.8 | 1.5 | 261 | 0.58 | 6.88 | 0.0104 | 0.1913 | 0.1809 |
| 10Ni-2Ag | 9.8 | 2 | 257 | 0.57 | 6.81 | 0.0121 | 0.2975 | 0.2854 |
Table 1 Physicochemical properties of Ni-Ag/SiO2 catalysts
| 样品 | 负载量①/% | SBET② / (m2/g) | Vpore③/ (cm3/g) | DBJH③/ nm | QCO④/ (mmol/g) | (mmol/g) | (mmol/g) | |
|---|---|---|---|---|---|---|---|---|
| Ni | Ag | |||||||
| SiO2 | — | — | 212 | 0.30 | 4.4 | — | — | — |
| 5Ni-1Ag | 4.6 | 0.98 | 247 | 0.61 | 8.24 | 0.0027 | 0.1241 | 0.1214 |
| 10Ni-1Ag | 9.8 | 0.98 | 267 | 0.58 | 7.00 | 0.0064 | 0.1289 | 0.1225 |
| 15Ni-1Ag | 14.7 | 0.97 | 285 | 0.54 | 5.90 | 0.0102 | 0.1344 | 0.1242 |
| 10Ni-1.5Ag | 9.8 | 1.5 | 261 | 0.58 | 6.88 | 0.0104 | 0.1913 | 0.1809 |
| 10Ni-2Ag | 9.8 | 2 | 257 | 0.57 | 6.81 | 0.0121 | 0.2975 | 0.2854 |
| 样品 | 低温区还原峰耗氢量/(10-3 mmol/g) | 中温区还原峰耗氢量/(10-2 mmol/g) | 高温区还原峰耗氢量/(mmol/g) |
|---|---|---|---|
| 5Ni-1Ag | 4.380 | 3.375 | 0.465 |
| 10Ni-1Ag | 4.311 | 4.915 | 0.831 |
| 15Ni-1Ag | 4.368 | 8.149 | 1.166 |
| 10Ni-1.5Ag | 5.948 | 5.893 | 0.818 |
| 10Ni-2Ag | 6.534 | 5.825 | 0.815 |
Table 2 Amount of hydrogen consumption corresponding to the H2-TPR peaks of Ni-Ag/SiO2 catalysts
| 样品 | 低温区还原峰耗氢量/(10-3 mmol/g) | 中温区还原峰耗氢量/(10-2 mmol/g) | 高温区还原峰耗氢量/(mmol/g) |
|---|---|---|---|
| 5Ni-1Ag | 4.380 | 3.375 | 0.465 |
| 10Ni-1Ag | 4.311 | 4.915 | 0.831 |
| 15Ni-1Ag | 4.368 | 8.149 | 1.166 |
| 10Ni-1.5Ag | 5.948 | 5.893 | 0.818 |
| 10Ni-2Ag | 6.534 | 5.825 | 0.815 |
Fig.5 Performance of Ni-Ag/SiO2 catalysts with (a)—(c) different Ni loadings and (d)—(f) different Ag loadings as a function of LHSV (reaction conditions: 220℃, 2.0 MPa, H2/DMO = 50)
Fig.6 Performance of Ni-Ag/SiO2 catalysts with (a)—(c) different Ni loadings and (d)—(f) different Ag loadings as a function of H2/DMO (reaction conditions: 220℃, 2.0 MPa, LHSV = 1 h-1)
| 催化剂 | LHSV/h-1 | H/D | DMO 转化率/% | 选择性/% | MG 收率% | ||
|---|---|---|---|---|---|---|---|
| MG | EG | 其他 | |||||
| 10Ni/SiO2 | 0.5 | 50 | 12.6 | 83.1 | 0.5 | 16.4 | 10.5 |
| 1 | 50 | 10.4 | 93.3 | 0.1 | 6.6 | 9.7 | |
| 10Ni-0.5Ag/SiO2 | 0.5 | 50 | 87.7 | 96.7 | 1.6 | 1.7 | 84.8 |
| 0.75 | 50 | 70.6 | 97.5 | 0.8 | 1.7 | 68.9 | |
| 1 | 50 | 58.0 | 97.5 | 0.6 | 1.9 | 56.5 | |
| 1.25 | 50 | 47.9 | 97.4 | 0.5 | 2.1 | 46.6 | |
| 1.5 | 50 | 39.9 | 97.3 | 0.4 | 2.3 | 38.8 | |
| 1 | 100 | 73.5 | 97.9 | 0.9 | 1.3 | 71.9 | |
| 1 | 75 | 64.5 | 97.9 | 0.7 | 1.4 | 63.2 | |
| 1 | 50 | 55.0 | 97.5 | 0.7 | 1.9 | 53.6 | |
| 1 | 25 | 40.2 | 96.6 | 0.5 | 3.0 | 38.8 | |
Table 3 Performance evaluation results of Ni-Ag/SiO2 catalysts with different Ni and Ag loadings
| 催化剂 | LHSV/h-1 | H/D | DMO 转化率/% | 选择性/% | MG 收率% | ||
|---|---|---|---|---|---|---|---|
| MG | EG | 其他 | |||||
| 10Ni/SiO2 | 0.5 | 50 | 12.6 | 83.1 | 0.5 | 16.4 | 10.5 |
| 1 | 50 | 10.4 | 93.3 | 0.1 | 6.6 | 9.7 | |
| 10Ni-0.5Ag/SiO2 | 0.5 | 50 | 87.7 | 96.7 | 1.6 | 1.7 | 84.8 |
| 0.75 | 50 | 70.6 | 97.5 | 0.8 | 1.7 | 68.9 | |
| 1 | 50 | 58.0 | 97.5 | 0.6 | 1.9 | 56.5 | |
| 1.25 | 50 | 47.9 | 97.4 | 0.5 | 2.1 | 46.6 | |
| 1.5 | 50 | 39.9 | 97.3 | 0.4 | 2.3 | 38.8 | |
| 1 | 100 | 73.5 | 97.9 | 0.9 | 1.3 | 71.9 | |
| 1 | 75 | 64.5 | 97.9 | 0.7 | 1.4 | 63.2 | |
| 1 | 50 | 55.0 | 97.5 | 0.7 | 1.9 | 53.6 | |
| 1 | 25 | 40.2 | 96.6 | 0.5 | 3.0 | 38.8 | |
| 催化剂 | H2-TPD | DMO-TPD | A(H2)/A(DMO) |
|---|---|---|---|
| 5Ni-1Ag/SiO2 | 0.70 | 0.35 | 1.98 |
| 10Ni-1Ag/SiO2 | 0.88 | 0.67 | 1.31 |
| 15Ni-1Ag/SiO2 | 0.95 | 0.78 | 1.23 |
| 10Ni-1.5Ag/SiO2 | 1.07 | 0.68 | 1.59 |
| 10Ni-2Ag/SiO2 | 1.27 | 0.69 | 1.85 |
Table 4 TPD area of Ni-Ag/SiO2 catalysts with different Ni and Ag loadings
| 催化剂 | H2-TPD | DMO-TPD | A(H2)/A(DMO) |
|---|---|---|---|
| 5Ni-1Ag/SiO2 | 0.70 | 0.35 | 1.98 |
| 10Ni-1Ag/SiO2 | 0.88 | 0.67 | 1.31 |
| 15Ni-1Ag/SiO2 | 0.95 | 0.78 | 1.23 |
| 10Ni-1.5Ag/SiO2 | 1.07 | 0.68 | 1.59 |
| 10Ni-2Ag/SiO2 | 1.27 | 0.69 | 1.85 |
| [1] | Yang Q C, Fan Y J, Liu C L, et al. A promising alternative potential solution for sustainable and economical development of coal to ethylene glycol industry: dimethyl oxalate to methyl glycolate process[J]. Energy, 2023, 277: 127668. |
| [2] | Zhou R J, Yan W Q, Cao Y Q, et al. Probing the structure sensitivity of dimethyl oxalate partial hydrogenation over Ag nanoparticles: a combined experimental and microkinetic study[J]. Chemical Engineering Science, 2022, 259: 117830. |
| [3] | Xie T H, Ai S, Huang Y C, et al. Synthesis and purification of glycolic acid from the mixture of methyl levulinate and methyl glycolate via acid-mediated hydrolysis reactions and extraction[J]. Separation and Purification Technology, 2021, 268: 118718. |
| [4] | An J W, Wang X H, Zhao J X, et al. Density-functional theory study on hydrogenation of dimethyl oxalate to methyl glycolate over copper catalyst: effect of copper valence state[J]. Molecular Catalysis, 2020, 482: 110667. |
| [5] | Huang H J, Wang B, Wang Y, et al. Partial hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst modified by sodium silicate[J]. Catalysis Today, 2020, 358: 68-73. |
| [6] | Sun Y, Wang H, Shen J H, et al. Highly effective synthesis of methyl glycolate with heteropolyacids as catalysts[J]. Catalysis Communications, 2009, 10(5): 678-681. |
| [7] | Luo Z W, Xu X F, Dong G L, et al. Regulating mesopore structures of support toward enhanced selective hydrogenation of dimethyl oxalate to methyl glycolate on Ag catalysts[J]. Chemical Engineering Journal, 2022, 450: 138397. |
| [8] | Dong G L, Luo Z W, Cao Y Q, et al. Understanding size-dependent hydrogenation of dimethyl oxalate to methyl glycolate over Ag catalysts[J]. Journal of Catalysis, 2021, 401: 252-261. |
| [9] | Qu R Y, Junge K, Beller M. Hydrogenation of carboxylic acids, esters, and related compounds over heterogeneous catalysts: a step toward sustainable and carbon-neutral processes[J]. Chemical Reviews, 2023, 123(3): 1103-1165. |
| [10] | Chen H M, Tan J J, Zhu Y L, et al. An effective and stable Ni2P/TiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. Catalysis Communications, 2016, 73: 46-49. |
| [11] | Zhu J, Cao L Q, Li C Y, et al. Nanoporous Ni3P evolutionarily structured onto a Ni foam for highly selective hydrogenation of dimethyl oxalate to methyl glycolate[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37635-37643. |
| [12] | Ouyang M Y, Wang J, Peng B, et al. Effect of Ti on Ag catalyst supported on spherical fibrous silica for partial hydrogenation of dimethyl oxalate[J]. Applied Surface Science, 2019, 466: 592-600. |
| [13] | Dong G L, Cao Y Q, Zheng S N, et al. Catalyst consisting of Ag nanoparticles anchored on amine-derivatized mesoporous silica nanospheres for the selective hydrogenation of dimethyl oxalate to methyl glycolate[J]. Journal of Catalysis, 2020, 391: 155-162. |
| [14] | Luo Z W, Ge X H, Fang D, et al. In situ exsolution to fabricate interfacial Ni0/Ni δ + sites for regulating reaction pathways in hydrogenation[J]. Journal of Catalysis, 2024, 434: 115528. |
| [15] | 方笛, 罗祖伟, 曹约强, 等. 催化剂制备方法对Ni-Ag/SiO2 催化草酸二甲酯加氢制乙醇酸甲酯性能的影响[J]. 燃料化学学报, 2024, 52(10): 1495-1507. |
| Fang D, Luo Z W, Cao Y Q, et al. Influence of Ni-Ag/SiO2 catalyst preparation method on its performance in hydrogenation of dimethyl oxalate to methyl glycolate[J]. Journal of Fuel Chemistry and Technology, 2024, 52(10): 1495-1507. | |
| [16] | Luo Z W, Shen Y, Fang D, et al. Insights into support effects of Ag/SiO2 catalysts for dimethyl glycolate semi-hydrogenation to methyl glycolate[J]. Molecular Catalysis, 2024, 559: 114109. |
| [17] | Yan W Q, Zhang J B, Xiao L, et al. Toward rational catalyst design for partial hydrogenation of dimethyl oxalate to methyl glycolate: a descriptor-based microkinetic analysis[J]. Catalysis Science & Technology, 2019, 9(20): 5763-5773. |
| [18] | Cao Y Q, Chen B, Guerrero-Sánchez J, et al. Controlling selectivity in unsaturated aldehyde hydrogenation using single-site alloy catalysts[J]. ACS Catalysis, 2019, 9(10): 9150-9157. |
| [19] | Giannakakis G, Flytzani-Stephanopoulos M, Charles H Sykes E. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts[J]. Accounts of Chemical Research, 2019, 52(1): 237-247. |
| [20] | Wang S, Zhao Z J, Chang X, et al. Activation and spillover of hydrogen on sub-1 nm palladium nanoclusters confined within sodalite zeolite for the semi-hydrogenation of alkynes[J]. Angewandte Chemie International Edition, 2019, 58(23): 7668-7672. |
| [21] | Jiang L Z, Liu K L, Hung S F, et al. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts[J]. Nature Nanotechnology, 2020, 15(10): 848-853. |
| [22] | Qi H M, Wang X L, Lei M, et al. Highly efficient catalytic hydrogenation of nitrobenzene on cobalt- immobilized nitrogen-doped carbon: a dual-sites synergistic effect between cobalt single atoms and cobalt nanoparticles[J]. Chemical Engineering Journal, 2024, 500: 157057. |
| [23] | Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073): 1209-1212. |
| [24] | Yang D, Tao S, Zhu H Y, et al. Construction of Rh-N4 single atoms and Rh clusters dual-active sites for synergistic heterogeneous hydroformylation of olefins with ultra-high turnover frequency[J]. Chemical Engineering Journal, 2024, 479: 147505. |
| [25] | Müslehiddinoğlu J, Vannice M A. CO adsorption on supported and promoted Ag epoxidation catalysts[J]. Journal of Catalysis, 2003, 213(2): 305-320. |
| [26] | Li J, Xiong H C, Liu X Z, et al. Weak CO binding sites induced by Cu-Ag interfaces promote CO electroreduction to multi-carbon liquid products[J]. Nature Communications, 2023, 14(1): 698. |
| [27] | 董桂霖, 罗祖伟, 曹约强, 等. 液相还原温度对草酸酯加氢制乙醇酸甲酯银硅催化剂性能的影响[J]. 化工学报, 2022, 73(1): 232-240. |
| Dong G L, Luo Z W, Cao Y Q, et al. Effect of liquid-phase reduction temperature on performance of silver-silica catalysts for hydrogenation of dimethyl oxalate to methyl glycolate[J]. CIESC Journal, 2022, 73(1): 232-240. | |
| [28] | Kuhaudomlap S, Mekasuwandumrong O, Praserthdam P, et al. Influence of highly stable Ni2+ species in Ni phyllosilicate catalysts on selective hydrogenation of furfural to furfuryl alcohol[J]. ACS Omega, 2022, 8(1): 249-261. |
| [29] | Yang F F, Wang H, Han J Y, et al. Enhanced selective deoxygenation of m-cresol to toluene on Ni/SiO2 catalysts derived from nickel phyllosilicate[J]. Catalysis Today, 2019, 330: 149-156. |
| [30] | Kong X, Zhu Y F, Zheng H Y, et al. Ni nanoparticles inlaid nickel phyllosilicate as a metal-acid bifunctional catalyst for low-temperature hydrogenolysis reactions[J]. ACS Catalysis, 2015, 5(10): 5914-5920. |
| [31] | Zheng J W, Lin H Q, Zheng X L, et al. Highly efficient mesostructured Ag/SBA-15 catalysts for the chemoselective synthesis of methyl glycolate by dimethyl oxalate hydrogenation[J]. Catalysis Communications, 2013, 40: 129-133. |
| [32] | Qu Z P, Huang W X, Cheng M J, et al. Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation[J]. The Journal of Physical Chemistry. B, 2005, 109(33): 15842-15848. |
| [33] | Zhou J F, Duan X P, Ye L M, et al. Enhanced chemoselective hydrogenation of dimethyl oxalate to methyl glycolate over bimetallic Ag-Ni/SBA-15 catalysts[J]. Applied Catalysis A: General, 2015, 505: 344-353. |
| [34] | Hengne A M, Malawadkar A V, Biradar N S, et al. Surface synergism of an Ag-Ni/ZrO2 nanocomposite for the catalytic transfer hydrogenation of bio-derived platform molecules[J]. RSC Advances, 2014, 4(19): 9730-9736. |
| [35] | Lazar M, Mihet M, Dan M, et al. Preparation and characterization of nickel based multicomponent catalysts[J]. Journal of Physics: Conference Series, 2009, 182: 012049. |
| [36] | Burattin P, Che M, Louis C. Ni/SiO2 materials prepared by deposition-precipitation: influence of the reduction conditions and mechanism of formation of metal particles[J]. The Journal of Physical Chemistry B, 2000, 104(45): 10482-10489. |
| [37] | Wang J Y, Fu Y, Kong W B, et al. Design of a carbon-resistant Ni@S-2 reforming catalyst: controllable Ni nanoparticles sandwiched in a peasecod-like structure[J]. Applied Catalysis B: Environmental, 2021, 282: 119546. |
| [38] | Yang H, Li J, Chang Q, et al. Ni nanoparticles inlaid in amorphous silicon nitride-derived nickel phyllosilicate: a highly stable and active catalyst for ammonia decomposition[J]. Fuel, 2025,394:135119. |
| [39] | Pei G X, Liu X Y, Wang A Q, et al. Selective hydrogenation of acetylene in an ethylene-rich stream over silica supported Ag-Ni bimetallic catalysts[J]. Applied Catalysis A: General, 2017, 545: 90-96. |
| [40] | Cheng S, Meng T, Mao D S, et al. Ni-modified Ag/SiO2 catalysts for selective hydrogenation of dimethyl oxalate to methyl glycolate[J]. Nanomaterials, 2022, 12(3): 407. |
| [41] | Yin A Y, Guo X Y, Prof K F, et al. Ion-exchange temperature effect on Cu/HMS catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. ChemCatChem, 2010, 2(2): 206-213. |
| [42] | Ghiat I, Boudjemaa A, Saadi A, et al. Efficient hydrogen generation over a novel Ni phyllosilicate photocatalyst[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382: 111952. |
| [43] | Waterhouse G I N, Bowmaker G A, Metson J B. Oxidation of a polycrystalline silver foil by reaction with ozone[J]. Applied Surface Science, 2001, 183(3/4): 191-204. |
| [44] | Chen H M, Tan J J, Cui J L, et al. Promoting effect of boron oxide on Ag/SiO2 catalyst for the hydrogenation of dimethyl oxalate to methyl glycolate[J]. Molecular Catalysis, 2017, 433: 346-353. |
| [45] | Cui G Q, Zhang X, Wang H, et al. ZrO2- x modified Cu nanocatalysts with synergistic catalysis towards carbon-oxygen bond hydrogenation[J]. Applied Catalysis B: Environmental, 2021, 280: 119406. |
| [46] | Cui G Q, Meng X Y, Zhang X, et al. Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid-base sites[J]. Applied Catalysis B: Environmental, 2019, 248: 394-404. |
| [47] | Wang C Z, Chen P J, Li Y K, et al. In situ DRIFTS study of CO coupling to dimethyl oxalate over structured Al-fiber@ns-AlOOH@Pd catalyst[J]. Journal of Catalysis, 2016, 344: 173-183. |
| [48] | Castonguay M, Roy J R, Rochefort A, et al. Orientation and conformation of methyl pyruvate on Ni(111)[J]. Journal of the American Chemical Society, 2000, 122(3): 518-524. |
| [49] | Castonguay M, Roy J R, Lavoie S, et al. Selective C—C bond activation of methyl pyruvate on Ni(111) to yield surface methoxycarbonyl[J]. Journal of the American Chemical Society, 2001, 123(26): 6429-6430. |
| [50] | Rachmady W, Vannice M A. Acetic acid reduction by H2 over supported Pt catalysts: a DRIFTS and TPD/TPR study[J]. Journal of Catalysis, 2002, 207(2): 317-330. |
| [51] | Gao X P, Zhou Y N, Jing F L, et al. Layered double hydroxides derived ZnO-Al2O3 supported Pd-Ag catalysts for selective hydrogenation of acetylene[J]. Chinese Journal of Chemistry, 2017, 35(6): 1009-1015. |
| [52] | Zou J L, Duan X P, Liu X, et al. Identifying the activity origin of silver catalysts induced by interfacial electron localization for regioselective CO bond hydrogenation[J]. Chemical Engineering Journal, 2023, 454: 140110. |
| [53] | Velu S, Gangwal S K. Synthesis of alumina supported nickel nanoparticle catalysts and evaluation of nickel metal dispersions by temperature programmed desorption[J]. Solid State Ionics, 2006, 177(7/8): 803-811. |
| [54] | Chen S, Pan X Y, Miao C X, et al. Study of catalytic hydrodeoxygenation performance for the Ni/KIT-6 catalysts[J]. Journal of Saudi Chemical Society, 2018, 22(5): 614-627. |
| [55] | Liu K R, Yan P F, Jiang H, et al. Silver initiated hydrogen spillover on anatase TiO2 creates active sites for selective hydrodeoxygenation of guaiacol[J]. Journal of Catalysis, 2019, 369: 396-404. |
| [56] | Dong C, Mu R T, Li R T, et al. Disentangling local interfacial confinement and remote spillover effects in oxide-oxide interactions[J]. Journal of the American Chemical Society, 2023, 145(31): 17056-17065. |
| [57] | Shin E J, Keane M A. Gas-phase hydrogenation/hydrogenolysis of phenol over supported nickel catalysts[J]. Industrial & Engineering Chemistry Research, 2000, 39(4): 883-892. |
| [1] | Yuntao ZHOU, Lifeng CUI, Jie ZHANG, Fuhong YU, Xingang LI, Ye TIAN. Ga2O3 modified CuCeO catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2025, 76(8): 4042-4051. |
| [2] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [3] | Han LIU, Jiaxin CUI, Mengfan YIN, Tao ZHENG, Rui ZHANG, Xianghai MENG, Zhichang LIU, Haiyan LIU, Chunming XU. Crystal structure of xylene·CuAlCl4 and measurement of solid-liquid equilibrium of binary system [J]. CIESC Journal, 2025, 76(5): 2241-2250. |
| [4] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
| [5] | Shunnian XU, Xiao FENG, Dejun SHI, Zhiguo SUN, Chenwei ZHANG, Gang WANG, Jinsen GAO, Chunming XU. Research on direct hydro-upgrading of crude oils and the dissociation of asphaltene supramolecules [J]. CIESC Journal, 2025, 76(2): 812-824. |
| [6] | Yifei LI, Yanfei SU, Tian YIN, Haoqiang JIANG, Zhiming XU, Linzhou ZHANG, Quan SHI, Chunming XU. Molecular composition and structure characterization of coal liquefaction product oil based on GC×GC-TOF MS [J]. CIESC Journal, 2025, 76(2): 543-553. |
| [7] | Yuxin JIN, Wenli WU, Hua TONG, Daiqi YE, Limin CHEN. Study on synergistic catalysis by highly dispersed dual-site Co species for CO2-oxidative dehydrogenation of ethane to ethylene [J]. CIESC Journal, 2025, 76(10): 5128-5140. |
| [8] | Jingyu WANG, Jia LIU, Jixiang XU, Lei WANG. Synthesis of lamellar PtZn@Silicalite-1 zeolite and its catalytic properties for propane dehydrogenation [J]. CIESC Journal, 2024, 75(9): 3188-3197. |
| [9] | Dezheng HU, Rong WANG, Shidong WANG, Wenfei YANG, Hongwei ZHANG, Pei YUAN. Construction of amorphous NiP@γ-Al2O3 catalyst rich in Ni δ+ for petroleum resin hydrogenation with enhanced hydrogenation and desulfurization activity [J]. CIESC Journal, 2024, 75(9): 3152-3162. |
| [10] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
| [11] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
| [12] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
| [13] | Lin ZHOU, Bin YE, Xinyi SUN, Lingxin KONG, Yan XU, Yujun ZHAO. Study on the catalytic hydrogenation of maleic anhydride by mesoporous carbon-supported Ni catalyst [J]. CIESC Journal, 2024, 75(11): 4264-4273. |
| [14] | Hongyu LI, Xiangkun LIU, Yao SHI, Yueqiang CAO, Gang QIAN, Xuezhi DUAN. Numerical simulation of particle-resolved fixed-bed reactor for selective acetylene hydrogenation process [J]. CIESC Journal, 2024, 75(10): 3610-3622. |
| [15] | Shiyu YAN, Jiaojiao GAO, Taishun YANG, Shangzhi XIE, Yanjuan YANG, Jing XU. Effect of coordination environment of ruthenium-based catalysts on their performance for polyethylene hydrogenolysis [J]. CIESC Journal, 2024, 75(10): 3588-3599. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||