CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6587-6600.DOI: 10.11949/0438-1157.20250447
• Energy and environmental engineering • Previous Articles Next Articles
Chenyang ZHOU(
), Haojie SHANG, Yang HU, Tianhang CAO, Erren YAO(
), Guang XI
Received:2025-04-27
Revised:2025-07-06
Online:2026-01-23
Published:2025-12-31
Contact:
Erren YAO
周晨阳(
), 商浩杰, 胡杨, 曹天航, 姚尔人(
), 席光
通讯作者:
姚尔人
作者简介:周晨阳(2004—),男,本科生,zcy2789866672@stu.xjtu.edu.cn
基金资助:CLC Number:
Chenyang ZHOU, Haojie SHANG, Yang HU, Tianhang CAO, Erren YAO, Guang XI. Thermo-economic analysis of a multi-pressure supercritical CO₂ pumped thermal energy storage system integrated with waste heat recovery[J]. CIESC Journal, 2025, 76(12): 6587-6600.
周晨阳, 商浩杰, 胡杨, 曹天航, 姚尔人, 席光. 集成余热回收的多压超临界CO2热泵储电系统热经济学特性研究[J]. 化工学报, 2025, 76(12): 6587-6600.
Add to citation manager EndNote|Ris|BibTeX
| 设备 | 成本函数 |
|---|---|
| 充电压缩机 | |
| 放电压缩机 | |
| 充电膨胀机 | |
| 放电膨胀机 | |
| 换热器 | |
| 储罐 | |
| 冷凝器 | |
| 烟气换热器 | |
| 回热器 |
Table 1 The procurement cost equation of system equipment[24-26]
| 设备 | 成本函数 |
|---|---|
| 充电压缩机 | |
| 放电压缩机 | |
| 充电膨胀机 | |
| 放电膨胀机 | |
| 换热器 | |
| 储罐 | |
| 冷凝器 | |
| 烟气换热器 | |
| 回热器 |
| 流股点 | 压力/kPa | 温度/K | 相对误差/% | |
|---|---|---|---|---|
| 文献[ | 本文 | |||
| 1 | 1500 | 523.15 | 523.15 | 0 |
| 2 | 8000 | 739.95 | 736.22 | 0.50 |
| 3 | 8000 | 545.45 | 546.51 | 0.19 |
| 4 | 8000 | 373.15 | 373.15 | 0.00 |
| 5 | 1500 | 251.94 | 254.97 | 1.20 |
| 6 | 1500 | 319.15 | 319.15 | 0 |
| 7 | 8000 | 729.95 | 726.22 | 0.51 |
| 8 | 1500 | 558.05 | 557.45 | 0.11 |
| 9 | 1500 | 408.85 | 410.22 | 0.34 |
| 10 | 1500 | 327.45 | 327.99 | 0.16 |
| 11 | 1500 | 259.94 | 262.97 | 1.17 |
| 12 | 8000 | 403.75 | 404.76 | 0.25 |
| 13 | 8000 | 535.15 | 536.09 | 0.18 |
Table 2 Model validation
| 流股点 | 压力/kPa | 温度/K | 相对误差/% | |
|---|---|---|---|---|
| 文献[ | 本文 | |||
| 1 | 1500 | 523.15 | 523.15 | 0 |
| 2 | 8000 | 739.95 | 736.22 | 0.50 |
| 3 | 8000 | 545.45 | 546.51 | 0.19 |
| 4 | 8000 | 373.15 | 373.15 | 0.00 |
| 5 | 1500 | 251.94 | 254.97 | 1.20 |
| 6 | 1500 | 319.15 | 319.15 | 0 |
| 7 | 8000 | 729.95 | 726.22 | 0.51 |
| 8 | 1500 | 558.05 | 557.45 | 0.11 |
| 9 | 1500 | 408.85 | 410.22 | 0.34 |
| 10 | 1500 | 327.45 | 327.99 | 0.16 |
| 11 | 1500 | 259.94 | 262.97 | 1.17 |
| 12 | 8000 | 403.75 | 404.76 | 0.25 |
| 13 | 8000 | 535.15 | 536.09 | 0.18 |
| 参数 | 数值 | 文献 |
|---|---|---|
| 环境温度/℃ | 25 | [ |
| 环境压力/kPa | 101.325 | [ |
| 压缩机进口压力/kPa | 7600 | [ |
| 压缩机出口压力/kPa | 25000 | [ |
| 充电压缩机进口温度/℃ | 220 | [ |
| 放电压缩机进口温度/℃ | 32 | [ |
| 充电循环质量流量/(kg·s-1) | 100 | [ |
| 放电循环最小换热端差/℃ | 5 | [ |
| 充电循环最小换热端差/℃ | 5 | [ |
| 充电压缩机等熵效率/% | 85 | [ |
| 充电膨胀机等熵效率/% | 90 | [ |
| 放电压缩机等熵效率/% | 80 | [ |
| 放电膨胀机等熵效率/% | 90 | [ |
Table 3 Charge and discharge initial parameters
| 参数 | 数值 | 文献 |
|---|---|---|
| 环境温度/℃ | 25 | [ |
| 环境压力/kPa | 101.325 | [ |
| 压缩机进口压力/kPa | 7600 | [ |
| 压缩机出口压力/kPa | 25000 | [ |
| 充电压缩机进口温度/℃ | 220 | [ |
| 放电压缩机进口温度/℃ | 32 | [ |
| 充电循环质量流量/(kg·s-1) | 100 | [ |
| 放电循环最小换热端差/℃ | 5 | [ |
| 充电循环最小换热端差/℃ | 5 | [ |
| 充电压缩机等熵效率/% | 85 | [ |
| 充电膨胀机等熵效率/% | 90 | [ |
| 放电压缩机等熵效率/% | 80 | [ |
| 放电膨胀机等熵效率/% | 90 | [ |
| 流股 | 温度/K | 压力/kPa | 比焓/(kJ·kg-1) | 比熵/(kJ·(kg·K) -1) | 质量流量/(kg·s-1) | 㶲/MW |
|---|---|---|---|---|---|---|
| 1 | 306.28 | 7600 | 372.27 | 1.563 | 100 | 21.640 |
| 2 | 322.32 | 7600 | 442.00 | 1.787 | 100 | 21.947 |
| 3 | 413.06 | 7600 | 572.08 | 2.146 | 100 | 24.225 |
| 4 | 493.15 | 7600 | 663.65 | 2.349 | 100 | 27.337 |
| 5 | 642.03 | 25000 | 805.59 | 2.383 | 100 | 40.529 |
| 6 | 528.87 | 25000 | 660.43 | 2.134 | 100 | 33.436 |
| 7 | 463.73 | 25000 | 568.86 | 1.949 | 100 | 29.795 |
| 8 | 373.15 | 25000 | 404.40 | 1.551 | 100 | 25.199 |
| 9 | 305.15 | 7600 | 315.08 | 1.376 | 80 | 17.200 |
| 10 | 348.01 | 25000 | 348.00 | 1.395 | 80 | 19.380 |
| 11 | 453.73 | 25000 | 553.58 | 1.916 | 80 | 23.408 |
| 12 | 493.15 | 25000 | 611.59 | 2.038 | 80 | 25.123 |
| 13 | 632.03 | 25000 | 793.04 | 2.363 | 80 | 31.889 |
| 14 | 510.19 | 7600 | 682.80 | 2.387 | 80 | 22.491 |
| 15 | 458.73 | 7600 | 624.80 | 2.268 | 80 | 20.709 |
| 16 | 332.32 | 7600 | 462.19 | 1.848 | 80 | 17.701 |
| 17 | 360.58 | 2000 | 114.61 | 0.345 | 85.26 | 1.003 |
| 18 | 458.73 | 2000 | 307.50 | 0.817 | 85.26 | 5.465 |
| 19 | 511.01 | 2000 | 424.33 | 1.058 | 44.83 | 4.890 |
| 20 | 637.03 | 2000 | 748.13 | 1.622 | 44.83 | 11.862 |
| 21 | 435.90 | 2000 | 259.58 | 0.709 | 64.17 | 3.088 |
| 22 | 327.32 | 2000 | 56.87 | 0.177 | 64.17 | 0.263 |
| 23 | 332.32 | 101.325 | 332.86 | 6.970 | 328.94 | 0.603 |
| 24 | 311.28 | 101.325 | 311.67 | 6.904 | 328.94 | 0.093 |
Table 4 Flow stock parameters
| 流股 | 温度/K | 压力/kPa | 比焓/(kJ·kg-1) | 比熵/(kJ·(kg·K) -1) | 质量流量/(kg·s-1) | 㶲/MW |
|---|---|---|---|---|---|---|
| 1 | 306.28 | 7600 | 372.27 | 1.563 | 100 | 21.640 |
| 2 | 322.32 | 7600 | 442.00 | 1.787 | 100 | 21.947 |
| 3 | 413.06 | 7600 | 572.08 | 2.146 | 100 | 24.225 |
| 4 | 493.15 | 7600 | 663.65 | 2.349 | 100 | 27.337 |
| 5 | 642.03 | 25000 | 805.59 | 2.383 | 100 | 40.529 |
| 6 | 528.87 | 25000 | 660.43 | 2.134 | 100 | 33.436 |
| 7 | 463.73 | 25000 | 568.86 | 1.949 | 100 | 29.795 |
| 8 | 373.15 | 25000 | 404.40 | 1.551 | 100 | 25.199 |
| 9 | 305.15 | 7600 | 315.08 | 1.376 | 80 | 17.200 |
| 10 | 348.01 | 25000 | 348.00 | 1.395 | 80 | 19.380 |
| 11 | 453.73 | 25000 | 553.58 | 1.916 | 80 | 23.408 |
| 12 | 493.15 | 25000 | 611.59 | 2.038 | 80 | 25.123 |
| 13 | 632.03 | 25000 | 793.04 | 2.363 | 80 | 31.889 |
| 14 | 510.19 | 7600 | 682.80 | 2.387 | 80 | 22.491 |
| 15 | 458.73 | 7600 | 624.80 | 2.268 | 80 | 20.709 |
| 16 | 332.32 | 7600 | 462.19 | 1.848 | 80 | 17.701 |
| 17 | 360.58 | 2000 | 114.61 | 0.345 | 85.26 | 1.003 |
| 18 | 458.73 | 2000 | 307.50 | 0.817 | 85.26 | 5.465 |
| 19 | 511.01 | 2000 | 424.33 | 1.058 | 44.83 | 4.890 |
| 20 | 637.03 | 2000 | 748.13 | 1.622 | 44.83 | 11.862 |
| 21 | 435.90 | 2000 | 259.58 | 0.709 | 64.17 | 3.088 |
| 22 | 327.32 | 2000 | 56.87 | 0.177 | 64.17 | 0.263 |
| 23 | 332.32 | 101.325 | 332.86 | 6.970 | 328.94 | 0.603 |
| 24 | 311.28 | 101.325 | 311.67 | 6.904 | 328.94 | 0.093 |
| 决策变量 | 取值 |
|---|---|
| 种群数量 | 150 |
| 迭代次数 | 200 |
| 选择函数 | Tournament |
| 突变函数 | Constraint dependent |
| 超参数组合规模 | 2 |
| 交叉函数 | Intermediate |
| 交叉分数 | 0.8 |
| Pareto分数 | 0.8 |
Table 5 Settings for system multi-objective optimization
| 决策变量 | 取值 |
|---|---|
| 种群数量 | 150 |
| 迭代次数 | 200 |
| 选择函数 | Tournament |
| 突变函数 | Constraint dependent |
| 超参数组合规模 | 2 |
| 交叉函数 | Intermediate |
| 交叉分数 | 0.8 |
| Pareto分数 | 0.8 |
| 决策变量 | 取值范围 |
|---|---|
| 充电压缩机进口温度/℃ | 200~220 |
| 压缩机出口压力/kPa | 19000~25000 |
| 压缩机进口压力/kPa | 7600~9000 |
| 充电压缩机等熵效率/% | 76~90 |
| 充电膨胀机等熵效率/% | 80~90 |
| 放电压缩机等熵效率/% | 74~90 |
| 放电膨胀机等熵效率/% | 80~90 |
| 放电循环质量流量/(kg·s-1) | 80~96 |
| 充电循环最小换热端差/℃ | 5~10 |
| 放电循环最小换热端差/℃ | 5~10 |
Table 6 The range of the value of the decision variable
| 决策变量 | 取值范围 |
|---|---|
| 充电压缩机进口温度/℃ | 200~220 |
| 压缩机出口压力/kPa | 19000~25000 |
| 压缩机进口压力/kPa | 7600~9000 |
| 充电压缩机等熵效率/% | 76~90 |
| 充电膨胀机等熵效率/% | 80~90 |
| 放电压缩机等熵效率/% | 74~90 |
| 放电膨胀机等熵效率/% | 80~90 |
| 放电循环质量流量/(kg·s-1) | 80~96 |
| 充电循环最小换热端差/℃ | 5~10 |
| 放电循环最小换热端差/℃ | 5~10 |
| 参数 | 数值 |
|---|---|
| 充电压缩机进口温度/℃ | 219.84 |
| 压缩机出口压力/kPa | 24250 |
| 压缩机进口压力/kPa | 7818 |
| 充电压缩机等熵效率/% | 85.66 |
| 充电膨胀机等熵效率/% | 81.93 |
| 放电压缩机等熵效率/% | 89.66 |
| 放电膨胀机等熵效率/% | 86.74 |
| 放电循环质量流量/(kg·s-1) | 95.93 |
| 充电循环最小换热端差/℃ | 5.04 |
| 放电循环最小换热端差/℃ | 5.05 |
Table 7 Optimal solution of decision variables
| 参数 | 数值 |
|---|---|
| 充电压缩机进口温度/℃ | 219.84 |
| 压缩机出口压力/kPa | 24250 |
| 压缩机进口压力/kPa | 7818 |
| 充电压缩机等熵效率/% | 85.66 |
| 充电膨胀机等熵效率/% | 81.93 |
| 放电压缩机等熵效率/% | 89.66 |
| 放电膨胀机等熵效率/% | 86.74 |
| 放电循环质量流量/(kg·s-1) | 95.93 |
| 充电循环最小换热端差/℃ | 5.04 |
| 放电循环最小换热端差/℃ | 5.05 |
| [1] | Kerschbaum A, Trentmann L, Hanel A, et al. Methods for analysing renewable energy potentials in energy system modelling: a review[J]. Renewable and Sustainable Energy Reviews, 2025, 215: 115559. |
| [2] | Lin Y C, Chong C H, Ma L W, et al. Quantification of waste heat potential in China: a top-down societal waste heat accounting model[J]. Energy, 2022, 261: 125194. |
| [3] | 卢昕悦, 陈锐莹, 姜夏雪, 等. 耦合LNG冷能的液态空气储能系统和液态CO2储能系统对比分析[J]. 化工学报, 2024, 75(9): 3297-3309. |
| Lu X Y, Chen R Y, Jiang X X, et al. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy[J]. CIESC Journal, 2024, 75(9): 3297-3309. | |
| [4] | 郑林烽, 缪源诚, 滕晓毕, 等. 考虑配储的火电机组灵活性改造模型与方法[J]. 中国电机工程学报, 2025, 45(4): 1501-1513. |
| Zheng L F, Miao Y C, Teng X B, et al. Model and method for flexible retrofit of thermal power units considering energy storage configuration[J]. Proceedings of the CSEE, 2025, 45(4): 1501-1513. | |
| [5] | 孙健, 陶建龙, 胡芸蓉, 等. 基于热泵型储电技术国内外研究综述[J]. 储能科学与技术, 2024, 13(6): 1963-1976. |
| Sun J, Tao J L, Hu Y R, et al. Summary of research on power storage technology based on heat pump at home and abroad[J]. Energy Storage Science and Technology, 2024, 13(6): 1963-1976. | |
| [6] | Smallbone A, Jülch V, Wardle R, et al. Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy Conversion and Management, 2017, 152: 221-228. |
| [7] | 卢沛, 王晋, 陈锴煌, 等. 新型全时段耦合余热的卡诺电池系统构建及热-经济性评估[J]. 工程热物理学报, 2023, 44(11): 3084-3090. |
| Lu P, Wang J, Cheng K H, et al. Thermo-economic evaluation of a novel Carnot battery with thermal integration during charging and discharging process[J]. Journal of Engineering Thermophysics, 2023, 44(11): 3084-3090. | |
| [8] | 赵永亮, 王朝阳, 刘明, 等. 基于跨临界循环的卡诺电池储能系统构型优化[J]. 工程热物理学报, 2021, 42(7): 1659-1666. |
| Zhao Y L, Wang C Y, Liu M, et al. Configuration optimization of Carnot battery energy storage system based on transcritical cycles[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1659-1666. | |
| [9] | Wang K, Shi X P, He Q. Thermodynamic analysis of novel carbon dioxide pumped-thermal energy storage system[J]. Applied Thermal Engineering, 2024, 255: 123969. |
| [10] | 张涵, 王亮, 林曦鹏, 等. 基于逆/正布雷顿循环的热泵储电系统性能[J]. 储能科学与技术, 2021, 10(5): 1796-1805. |
| Zhang H, Wang L, Lin X P, et al. Performance of pumped thermal electricity storage system based on reverse/forward Brayton cycle[J]. Energy Storage Science and Technology, 2021, 10(5): 1796-1805. | |
| [11] | Liu Y P, Wang Y, Huang D G. Supercritical CO2 Brayton cycle: a state-of-the-art review[J]. Energy, 2019, 189: 115900. |
| [12] | 刘明, 张旭伟, 王朝阳, 等. 集成SCO2动力循环的燃煤电站余热回收系统研究[J]. 工程热物理学报, 2017, 38(8): 1613-1618. |
| Liu M, Zhang X W, Wang C Y, et al. Study on heat recovery system of coal-fired power plant integrated with SCO2 power cycle[J]. Journal of Engineering Thermophysics, 2017, 38(8): 1613-1618. | |
| [13] | 孙瑞强, 李延兵, 刘明, 等. 集成外热源的超临界二氧化碳热泵储电系统性能研究[J]. 动力工程学报, 2023, 43(11): 1469-1476. |
| Sun R Q, Li Y B, Liu M, et al. Performance evaluation on supercritical carbon dioxide pumped thermal electricity storage system integrated with external thermal source[J]. Journal of Chinese Society of Power Engineering, 2023, 43(11): 1469-1476. | |
| [14] | Sun R Q, Zhao Y L, Liu M, et al. Thermodynamic design and optimization of pumped thermal electricity storage systems using supercritical carbon dioxide as the working fluid[J]. Energy Conversion and Management, 2022, 271: 116322. |
| [15] | Tauveron N, Macchi E, Nguyen D, et al. Experimental study of supercritical CO2 heat transfer in a thermo-electric energy storage based on Rankine and heat-pump cycles[J]. Energy Procedia, 2017, 129: 939-946. |
| [16] | Sharma S, Mortazavi M. Pumped thermal energy storage: a review[J]. International Journal of Heat and Mass Transfer, 2023, 213: 124286. |
| [17] | Breidenbach N, Martin C, Jockenhöfer H, et al. Thermal energy storage in molten salts: overview of novel concepts and the DLR test facility TESIS[J]. Energy Procedia, 2016, 99: 120-129. |
| [18] | 于博旭, 韩瑞, 刘倩, 等. 耦合火电厂灵活改造的卡诺电池储能系统热力学性能研究[J]. 储能科学与技术, 2025, 14(4): 1461. |
| Yu B X, Han R, Liu Q, et al. Thermodynamic performance of flexible retrofit Carnot battery energy storage system in coupled thermal power plant[J]. Energy Storage Science and Technology, 2025, 14(4): 1461. | |
| [19] | 韩瑞, 廖志荣, 于博旭, 等. 面向火电厂改造的熔盐卡诺电池储能系统仿真研究[J]. 储能科学与技术, 2023, 12(12): 3605-3615. |
| Han R, Liao Z R, Yu B X, et al. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant[J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615. | |
| [20] | Vinnemeier P, Wirsum M, Malpiece D, et al. Integration of heat pumps into thermal plants for creation of large-scale electricity storage capacities[J]. Applied Energy, 2016, 184: 506-522. |
| [21] | 邵明轩, 孙杨, 张祥, 等. 依托低阶煤电站的提质储热卡诺电池及其性能分析[J]. 中国电机工程学报, 2023, 43(14): 5525-5537. |
| Shao M X, Sun Y, Zhang X, et al. Carnot battery integrated with low-rank coal power plant for the stored heat upgrading and its performance analysis[J]. Proceedings of the CSEE, 2023, 43(14): 5525-5537. | |
| [22] | 吴志斌, 邵轩, 郑普. 基于燃煤电厂烟气余热利用场景下的卡诺电池系统性能分析[J]. 建模与仿真, 2023, 12(4): 3481-3490. |
| Wu Z B, Shao X, Zheng P. Performance analysis of Carnot battery system based on flue gas waste heat utilization scenario in coal-fired power plants[J]. Modeling and Simulation, 2023, 12(4): 3481-3490. | |
| [23] | Forman C, Muritala I K, Pardemann R, et al. Estimating the global waste heat potential[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1568-1579. |
| [24] | Yao E R, Wang H R, Wang L G, et al. Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system[J]. Energy Conversion and Management, 2017, 138: 199-209. |
| [25] | Mazloum Y, Sayah H, Nemer M. Exergy analysis and exergoeconomic optimization of a constant-pressure adiabatic compressed air energy storage system[J]. Journal of Energy Storage, 2017, 14: 192-202. |
| [26] | Geissbühler L, Becattini V, Zanganeh G, et al. Pilot-scale demonstration of advanced adiabatic compressed air energy storage(part 1): Plant description and tests with sensible thermal-energy storage[J]. Journal of Energy Storage, 2018, 17: 129-139. |
| [27] | Hu Y, Yao E R, Zhong L K, et al. Techno-economic analysis of thermochemical-integrated pumped thermal energy storage system[J]. Journal of Energy Storage, 2024, 104: 114394. |
| [28] | 仲理科. 基于固体氧化物电池的新型能量系统构建与热管理研究[D]. 西安: 西安交通大学,2023. |
| Zhong L K. Investigation on novel energy system constructions and thermal management based on solid oxide cell[D]. Xi'an: Xi'an Jiaotong University, 2023. | |
| [29] | Zhu H T, Xie G N, Yuan H, et al. Thermodynamic assessment of combined supercritical CO2 cycle power systems with organic Rankine cycle or Kalina cycle[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 102166. |
| [30] | Vecchi A, Knobloch K, Liang T, et al. Carnot battery development: a review on system performance, applications and commercial state-of-the-art[J]. Journal of Energy Storage, 2022, 55: 105782. |
| [31] | Sadni E E, Salhi I, Belhora F, et al. Multi-objective optimization of energy and exergy efficiencies in ORC configurations using NSGA-Ⅱ and TOPSIS[J]. Thermal Science and Engineering Progress, 2025, 63: 103606. |
| [32] | 王群, 姜悦茂, 王哲, 等. 船载GT-sCO2双布雷顿联合循环经济分析与多目标优化[J]. 西安交通大学学报, 2023, 57(1): 87-99. |
| Wang Q, Jiang Y M, Wang Z, et al. Exergoeconomic analysis and multi-objective optimization of a marine GT-sCO2 dual brayton combined cycle[J]. Journal of Xi'an Jiaotong University, 2023, 57(1): 87-99. | |
| [33] | Wang Z, Liu H, Jiang C H, et al. Assessment and optimization of a novel combined heat and power system through an energy nexus approach: enhancing energy storage and sustainability[J]. Energy, 2025, 322: 135575. |
| [34] | Hao J H, Ju C Z, Ma T Y, et al. Integrated modeling and exergy evaluation of an advanced solar-driven supercritical carbon dioxide-heat pump cogeneration system by standard thermal resistance[J]. Energy Conversion and Management, 2024, 307: 118357. |
| [35] | Alsagri A S, Rahbari H R, Wang L N, et al. Thermo-economic optimization of an innovative integration of thermal energy storage and supercritical CO2 cycle using artificial intelligence techniques[J]. Process Safety and Environmental Protection, 2024, 186: 1373-1386. |
| [1] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [2] | Siyuan WANG, Guoqiang LIU, Tong XIONG, Gang YAN. Characteristics of non-uniform wind velocity distribution in window air conditioner axial fans and their impact on optimizing condenser circuit optimization [J]. CIESC Journal, 2025, 76(S1): 205-216. |
| [3] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [4] | Jing ZHAO, Shuchen DONG, Gaoyang LI, Youke HUANG, Haosen SHI, Shuwen MIAO, Chenyan TAN, Tangqi ZHU, Yongshuai LI, Hui PAN, Hao LING. Simulation and optimization of battery performance based on the electrochemical model [J]. CIESC Journal, 2025, 76(9): 4922-4932. |
| [5] | Peng TIAN, Zhonglin ZHANG, Chao REN, Guochao MENG, Xiaogang HAO, Yegang LIU, Qiwang HOU, Abuliti ABUDULA, Guoqing GUAN. Modeling and optimization of rectisol process based on self-heat regeneration [J]. CIESC Journal, 2025, 76(9): 4601-4612. |
| [6] | Xuewen LI, Zhihong WANG, Yang GAO, Ming'ou WU, Wenhao MA, Renmin TAN. Multi-objective optimization of amine-based desulfurization regeneration system integrated with heat pump technology [J]. CIESC Journal, 2025, 76(9): 4563-4577. |
| [7] | Xiaofeng CAO, Huahai ZHANG, Jiangyun WANG, Limin WANG. Structural design and flow characteristics of conical gas laminar flow element [J]. CIESC Journal, 2025, 76(9): 4440-4448. |
| [8] | Lu LIU, Wenyue WANG, Teng WANG, Tai WANG, Xinyu DONG, Jiancheng TANG, Shaoheng WANG. Optimization and analysis of hydrogen liquefaction process based on dual mixed refrigerant deep-cooling [J]. CIESC Journal, 2025, 76(9): 4933-4943. |
| [9] | Ke LI, Haolin XIE, Jian WEN. Multi-objective genetic algorithm optimization for thermal insulation performance of liquid hydrogen tank with multiple vapor-cooled shields [J]. CIESC Journal, 2025, 76(8): 4217-4227. |
| [10] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [11] | Xiaolong WU, Xiaohuang HUANG, Yuan XIAO, Linghai SHAN, Jiahui YE, Guomin CUI. Reserve empty node strategy applied to optimization of heat exchanger networks [J]. CIESC Journal, 2025, 76(7): 3388-3402. |
| [12] | Hongxin DING, Wenxiang GAN, Yongyang ZHAO, Runze JIA, Ziqi KANG, Yulong ZHAO, Yong XIANG. Corrosion mechanisms of X65 steel welded joints in supercritical CO2 and H2O-rich phases [J]. CIESC Journal, 2025, 76(7): 3426-3435. |
| [13] | Tao WANG, Guangming LI, Qiuxia HU, Jing XU. Optimization of warpage process for two-color injection products based on temporal evolution particle swarm optimization algorithm [J]. CIESC Journal, 2025, 76(7): 3403-3415. |
| [14] | Haohao ZHANG, Li GUO, Xinyi LI, Jinyi CHEN, Chao HUA, Ping LU. Research progress on optimal design and dynamic control of dividing wall column [J]. CIESC Journal, 2025, 76(6): 2434-2450. |
| [15] | Lin LI, Mingmei WANG, Erwei SONG, Wenwen WANG, Yaochang ZHANG, Erqiang WANG. Thermodynamic analysis and optimization of isoprene/n-pentane separation process [J]. CIESC Journal, 2025, 76(6): 2549-2558. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||