CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 1943-1959.DOI: 10.11949/0438-1157.20241432
• Reviews and monographs • Previous Articles
Jinyue WANG1,2(
), Enze XIE1,2(
), Hanze MA1,2, Sheng YUAN1,2, Guangwei HE1,2,3(
), Zhongyi JIANG1,2,3(
)
Received:2024-12-10
Revised:2025-01-24
Online:2025-06-13
Published:2025-05-25
Contact:
Guangwei HE, Zhongyi JIANG
王金月1,2(
), 谢恩泽1,2(
), 马翰泽1,2, 袁晟1,2, 何光伟1,2,3(
), 姜忠义1,2,3(
)
通讯作者:
何光伟,姜忠义
作者简介:王金月(1999—),女,硕士研究生,wjy0829@tju.edu.cn基金资助:CLC Number:
Jinyue WANG, Enze XIE, Hanze MA, Sheng YUAN, Guangwei HE, Zhongyi JIANG. Monoatomic layer separation membrane: progress and prospect[J]. CIESC Journal, 2025, 76(5): 1943-1959.
王金月, 谢恩泽, 马翰泽, 袁晟, 何光伟, 姜忠义. 单原子层分离膜:进展与展望[J]. 化工学报, 2025, 76(5): 1943-1959.
Add to citation manager EndNote|Ris|BibTeX
| 构筑策略 | 自上而下 | 自下而上 |
|---|---|---|
| 原理和方法 | 通过外部能量或化学试剂在二维材料中移除原子或引入空位形成纳米孔。 • 物理轰击 • 化学蚀刻 • 高能等离子体 | 基于界面反应或分子组装,通过气/固、液/液或液/固界面化学反应自组装形成二维材料,直接构筑具有孔洞结构的单层膜。 • 气/固界面 • 液/液界面 • 液/固界面 |
| 孔径控制能力 | 精确性高:通过控制轰击能量、蚀刻剂浓度、等离子体能量等实现孔径尺寸和密度的高精度调控;如“级联压缩”可显著改善孔径分布并增加孔密度。 | 受工艺限制:孔径尺寸及均匀性取决于界面反应条件、前体性质及合成动力学的调控,需要优化工艺参数以提升孔径控制水平。 |
| 技术优势 | • 孔径分布精准 • 适配多种单层材料 • 易与其他策略耦合 | • 适合大面积制备 • 功能化设计灵活 |
| 工艺复杂性 | 中高:工艺条件苛刻,制备成本较高,但能满足高性能膜材料的需求。 | 低:工艺条件相对温和,设备要求低,适合实验室研究和大规模工业制备。 |
| 适用材料范围 | 适用于多种二维材料,尤其是对孔径分布和密度要求严格的膜分离应用。 | 可应用于有机和无机材料,适用于多种薄膜分离应用场景。 |
| 典型膜分离应用 场景 | • 气体分离:如H₂/CO₂、H₂/CH₄的高选择性分离,适用于严苛工业环境。 • 液体分离:海水淡化、渗透蒸发等高性能分离场景。 | • 气体分离:可用于一般气体分离场景。 • 液体分离:适用于纳滤、超滤及有机溶剂分离,具有大面积制备潜力。 |
Table 1 Comparison of nanopore construction strategies for SLNM
| 构筑策略 | 自上而下 | 自下而上 |
|---|---|---|
| 原理和方法 | 通过外部能量或化学试剂在二维材料中移除原子或引入空位形成纳米孔。 • 物理轰击 • 化学蚀刻 • 高能等离子体 | 基于界面反应或分子组装,通过气/固、液/液或液/固界面化学反应自组装形成二维材料,直接构筑具有孔洞结构的单层膜。 • 气/固界面 • 液/液界面 • 液/固界面 |
| 孔径控制能力 | 精确性高:通过控制轰击能量、蚀刻剂浓度、等离子体能量等实现孔径尺寸和密度的高精度调控;如“级联压缩”可显著改善孔径分布并增加孔密度。 | 受工艺限制:孔径尺寸及均匀性取决于界面反应条件、前体性质及合成动力学的调控,需要优化工艺参数以提升孔径控制水平。 |
| 技术优势 | • 孔径分布精准 • 适配多种单层材料 • 易与其他策略耦合 | • 适合大面积制备 • 功能化设计灵活 |
| 工艺复杂性 | 中高:工艺条件苛刻,制备成本较高,但能满足高性能膜材料的需求。 | 低:工艺条件相对温和,设备要求低,适合实验室研究和大规模工业制备。 |
| 适用材料范围 | 适用于多种二维材料,尤其是对孔径分布和密度要求严格的膜分离应用。 | 可应用于有机和无机材料,适用于多种薄膜分离应用场景。 |
| 典型膜分离应用 场景 | • 气体分离:如H₂/CO₂、H₂/CH₄的高选择性分离,适用于严苛工业环境。 • 液体分离:海水淡化、渗透蒸发等高性能分离场景。 | • 气体分离:可用于一般气体分离场景。 • 液体分离:适用于纳滤、超滤及有机溶剂分离,具有大面积制备潜力。 |
Fig.10 Overview of the process of synthesizing large-area nanoporous single layer graphene membranes from single-layer polycrystalline graphene prepared by CVD[90]
| 材料 | 膜制备方法 | H2渗透通量 | H2/CH4选择性 | 文献 | |
|---|---|---|---|---|---|
| GPU① | Barrer② | ||||
| PIM-EA-TB | 相转化法 | — | 7760 | 11.1 | [ |
| GO/AAO | 逐层自组装法 | 589 | — | 66.7 | [ |
| ZIF-62/AAO | 熔融淬火法 | — | 4156 | 50 | [ |
| COF-LZU1–ACOF-1 | 溶剂热法 | — | 543.6 | 105 | [ |
| 碳分子筛 | 浸渍炭化法 | 324 | — | 435 | [ |
| SLG | CVD | >4000 | — | >2000 | [ |
| SLG | O2 plasma、O3刻蚀 | 3400 | — | 25.1 | [ |
| SLG | O3、O2刻蚀 | 7200 | — | 37.5 | [ |
Table 2 H2/CH4 separation performance of some 2D/porous materials
| 材料 | 膜制备方法 | H2渗透通量 | H2/CH4选择性 | 文献 | |
|---|---|---|---|---|---|
| GPU① | Barrer② | ||||
| PIM-EA-TB | 相转化法 | — | 7760 | 11.1 | [ |
| GO/AAO | 逐层自组装法 | 589 | — | 66.7 | [ |
| ZIF-62/AAO | 熔融淬火法 | — | 4156 | 50 | [ |
| COF-LZU1–ACOF-1 | 溶剂热法 | — | 543.6 | 105 | [ |
| 碳分子筛 | 浸渍炭化法 | 324 | — | 435 | [ |
| SLG | CVD | >4000 | — | >2000 | [ |
| SLG | O2 plasma、O3刻蚀 | 3400 | — | 25.1 | [ |
| SLG | O3、O2刻蚀 | 7200 | — | 37.5 | [ |
| 1 | Du N Y, Park H B, Dal-Cin M M, et al. Advances in high permeability polymeric membrane materials for CO2 separations[J]. Energy & Environmental Science, 2012, 5(6): 7306-7322. |
| 2 | Yampolskii Y. Polymeric gas separation membranes[J]. Macromolecules, 2012, 45(8): 3298-3311. |
| 3 | Low Z X, Budd P M, McKeown N B, et al. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers[J]. Chemical Reviews, 2018, 118(12): 5871-5911. |
| 4 | Liu D G, Jin P W, Xu P N. Two-dimensional-material membranes: a new family of high-performance separation membranes[J]. Angewandte Chemie International Edition, 2016, 55(43): 13384-13397. |
| 5 | Yuan Z, Benck J D, Eatmon Y, et al. Stable, temperature-dependent gas mixture permeation and separation through suspended nanoporous single-layer graphene membranes[J]. Nano Letters, 2018, 18(8): 5057-5069. |
| 6 | Jiang D E, Cooper V R, Dai S. Porous graphene as the ultimate membrane for gas separation[J]. Nano Letters, 2009, 9(12): 4019-4024. |
| 7 | Celebi K, Buchheim J, Wyss R M, et al. Ultimate permeation across atomically thin porous graphene[J]. Science, 2014, 344(6181): 289-292. |
| 8 | Wang L D, Williams C M, Boutilier M S H, et al. Single-layer graphene membranes withstand ultrahigh applied pressure[J]. Nano Letters, 2017, 17(5): 3081-3088. |
| 9 | Lin L, Deng B, Sun J Y, et al. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene[J]. Chemical Reviews, 2018, 118(18): 9281-9343. |
| 10 | Fasolino A, Los J H, Katsnelson M I. Intrinsic ripples in graphene[J]. Nature Materials, 2007, 6(11): 858-861. |
| 11 | Deng B, Liu Z F, Peng H L. Toward mass production of CVD graphene films[J]. Advanced Materials, 2019, 31(9): 1800996. |
| 12 | Yang Y B, Yang X D, Liang L, et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration[J]. Science, 2019, 364(6445): 1057-1062. |
| 13 | Huang S Q, Dakhchoune M, Luo W, et al. Single-layer graphene membranes by crack-free transfer for gas mixture separation[J]. Nature Communications, 2018, 9(1): 2632. |
| 14 | Safron N S, Kim M, Gopalan P, et al. Barrier-guided growth of micro- and nano-structured graphene[J]. Advanced Materials, 2012, 24(8): 1041-1045. |
| 15 | Hsu K J, Villalobos L F, Huang S Q, et al. Multipulsed millisecond ozone gasification for predictable tuning of nucleation and nucleation-decoupled nanopore expansion in graphene for carbon capture[J]. ACS Nano, 2021, 15(8): 13230-13239. |
| 16 | Zhao G K, Li X M, Huang M R, et al. The physics and chemistry of graphene-on-surfaces[J]. Chemical Society Reviews, 2017, 46(15): 4417-4449. |
| 17 | He G W, Huang S Q, Villalobos L F, et al. High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target[J]. Energy & Environmental Science, 2019, 12(11): 3305-3312. |
| 18 | Jang D, Idrobo J C, Laoui T, et al. Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes[J]. ACS Nano, 2017, 11(10): 10042-10052. |
| 19 | Surwade S P, Smirnov S N, Vlassiouk I V, et al. Water desalination using nanoporous single-layer graphene[J]. Nature Nanotechnology, 2015, 10(5): 459-464. |
| 20 | Zhou Z Y, Zhao K N, Chi H Y, et al. Electrochemical-repaired porous graphene membranes for precise ion-ion separation[J]. Nature Communications, 2024, 15(1): 4006. |
| 21 | Zhang Y Y, Pei Q X, Liu H Y, et al. Thermal conductivity of a h-BCN monolayer[J]. Physical Chemistry Chemical Physics, 2017, 19(40): 27326-27331. |
| 22 | Wang Z F, Tang Z J, Xue Q, et al. Fabrication of boron nitride nanosheets by exfoliation[J]. The Chemical Record, 2016, 16(3): 1204-1215. |
| 23 | Liu Z, Gong Y J, Zhou W, et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride[J]. Nature Communications, 2013, 4: 2541. |
| 24 | Li L H, Cervenka J, Watanabe K, et al. Strong oxidation resistance of atomically thin boron nitride nanosheets[J]. ACS Nano, 2014, 8(2): 1457-1462. |
| 25 | Yoon S I, Seo D J, Kim G, et al. AA'-stacked trilayer hexagonal boron nitride membrane for proton exchange membrane fuel cells[J]. ACS Nano, 2018, 12(11): 10764-10771. |
| 26 | Wang L, Xu X Z, Zhang L N, et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper[J]. Nature, 2019, 570(7759): 91-95. |
| 27 | Mouhoub O, Ricolleau C, Wang G, et al. Probing Structural and Electronic Properties of h-BN by HRTEM and STM[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. |
| 28 | Ivanovskii A L. Graphynes and graphdyines[J]. Progress in Solid State Chemistry, 2013, 41(1/2): 1-19. |
| 29 | Lin S C, Buehler M J. Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification[J]. Nanoscale, 2013, 5(23): 11801-11807. |
| 30 | Li G X, Li Y L, Liu H B, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19): 3256-3258. |
| 31 | Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. Journal of the American Chemical Society, 2017, 139(8): 3145-3152. |
| 32 | Liu R, Gao X, Zhou J Y, et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil[J]. Advanced Materials, 2017, 29(18): 1604665. |
| 33 | Shen J, Cai Y C, Zhang C H, et al. Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes[J]. Nature Materials, 2022, 21(10): 1183-1190. |
| 34 | Gao X, Liu H B, Wang D, et al. Graphdiyne: synthesis, properties, and applications[J]. Chemical Society Reviews, 2019, 48(3): 908-936. |
| 35 | Pelkowski C E, Natraj A, Malliakas C D, et al. Tuning crystallinity and stacking of two-dimensional covalent organic frameworks through side-chain interactions[J]. Journal of the American Chemical Society, 2023, 145(40): 21798-21806. |
| 36 | Fan H W, Mundstock A, Feldhoff A, et al. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation[J]. Journal of the American Chemical Society, 2018, 140(32): 10094-10098. |
| 37 | Lin S, Diercks C S, Zhang Y B, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO₂ reduction in water[J]. Science, 2015, 349(6253): 1208-1213. |
| 38 | Yuan S, Li X, Zhu J, et al. Covalent organic frameworks for membrane separation[J]. Chemical Society Reviews, 2019, 48(10): 2665-2681. |
| 39 | Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
| 40 | Chandra S, Roy Chowdhury D, Addicoat M, et al. Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials[J]. Chemistry of Materials, 2017, 29(5): 2074-2080. |
| 41 | Zhong Y, Cheng B R, Park C, et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices[J]. Science, 2019, 366(6471): 1379-1384. |
| 42 | Yang J L, Tu B, Zhang G J, et al. Advancing osmotic power generation by covalent organic framework monolayer[J]. Nature Nanotechnology, 2022, 17(6): 622-628. |
| 43 | Zhou H, Kitagawa S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews, 2014, 43(16): 5415-5418. |
| 44 | Li X, Liu Y X, Wang J, et al. Metal-organic frameworks based membranes for liquid separation[J]. Chemical Society Reviews, 2017, 46(23): 7124-7144. |
| 45 | Ang H X, Hong L. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 28079-28088. |
| 46 | Zhu D X, Tian D C, Do-Thanh D C, et al. Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation[J]. ChemSusChem, 2017, 10(17): 3304-3316. |
| 47 | Zhao S L, Wang Y, Dong J C, et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy, 2016, 1(12): 16184. |
| 48 | Huang J, Li Y, Huang R K, et al. Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2018, 57(17): 4632-4636. |
| 49 | López-Cabrelles J, Mañas-Valero S, Vitórica-Yrezábal I J, et al. Isoreticular two-dimensional magnetic coordination polymers prepared through pre-synthetic ligand functionalization[J]. Nature Chemistry, 2018, 10(10): 1001-1007. |
| 50 | Liu J X, Chen Y X, Huang X, et al. On-liquid-gallium surface synthesis of ultrasmooth thin films of conductive metal-organic frameworks[J]. Nature Synthesis, 2024, 3: 715-726. |
| 51 | Liu Q, Miao Y R, Villalobos L F, et al. Unit-cell-thick zeolitic imidazolate framework films for membrane application[J]. Nature Materials, 2023, 22(11): 1387-1393. |
| 52 | Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane[J]. Nature, 2010, 467(7312): 190-193. |
| 53 | Merchant C A, Healy K, Wanunu M, et al. DNA translocation through graphene nanopores[J]. Nano Letters, 2010, 10(8): 2915-2921. |
| 54 | Buchheim J, Wyss R M, Shorubalko I, et al. Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation[J]. Nanoscale, 2016, 8(15): 8345-8354. |
| 55 | Thiruraman J P, Das P M, Drndić M. Irradiation of transition metal dichalcogenides using a focused ion beam: controlled single-atom defect creation[J]. Advanced Functional Materials, 2019, 29(52): 1904668. |
| 56 | Wang J T, Cheng C, Zheng X D, et al. Cascaded compression of size distribution of nanopores in monolayer graphene[J]. Nature, 2023, 623(7989): 956-963. |
| 57 | Chu X, Schmidt L D. Reactions of NO, O2, H2O, and CO2 with the basal plane of graphite[J]. Surface Science, 1992, 268(1/2/3): 325-332. |
| 58 | Tracz A, Wegner G, Rabe J P. Scanning tunneling microscopy study of graphite oxidation in ozone-air mixtures[J]. Langmuir, 2003, 19(17): 6807-6812. |
| 59 | Schlichting K P, Poulikakos D. Selective etching of graphene membrane nanopores: from molecular sieving to extreme permeance[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36468-36477. |
| 60 | Rezaei M, Villalobos L F, Hsu K J, et al. Demonstrating and unraveling a controlled nanometer-scale expansion of the vacancy defects in graphene by CO2 [J]. Angewandte Chemie International Edition, 2022, 61(18): e202200321. |
| 61 | Zhao J, He G, Huang S, et al. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation[J]. Science Advances, 2019, 5(1): eaav1851. |
| 62 | Huang S Q, Li S X, Villalobos L F, et al. Millisecond lattice gasification for high-density CO2- and O2-sieving nanopores in single-layer graphene[J]. Science Advances, 2021, 7(9): eabf0116. |
| 63 | Koizumi K, Boero M, Shigeta Y, et al. Atom-scale reaction pathways and free-energy landscapes in oxygen plasma etching of graphene[J]. The Journal of Physical Chemistry Letters, 2013, 4(10): 1592-1596. |
| 64 | Harpale A, Chew H B. Hydrogen-plasma patterning of multilayer graphene: mechanisms and modeling[J]. Carbon, 2017, 117: 82-91. |
| 65 | James Claire F, Solomos M A, Kim J, et al. Structural and electronic switching of a single crystal 2D metal-organic framework prepared by chemical vapor deposition[J]. Nature Communications, 2020, 11(1): 5524. |
| 66 | Zhan Y J, Liu Z, Najmaei S, et al. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8(7): 966-971. |
| 67 | Choi K, Droudian A, Wyss R M, et al. Multifunctional wafer-scale graphene membranes for fast ultrafiltration and high permeation gas separation[J]. Science Advances, 2018, 4(11): eaau0476. |
| 68 | Wang L, Zhang X Y, Chan H L W, et al. Formation and healing of vacancies in graphene chemical vapor deposition (CVD) growth[J]. Journal of the American Chemical Society, 2013, 135(11): 4476-4482. |
| 69 | Kidambi P R, Nguyen G D, Zhang S, et al. Facile fabrication of large-area atomically thin membranes by direct synthesis of graphene with nanoscale porosity[J]. Advanced Materials, 2018, 30(49): 1804977. |
| 70 | Liu M H, Liu Y X, Dong J C, et al. Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion[J]. Nature Communications, 2022, 13(1): 1411. |
| 71 | Colson J W, Woll A R, Mukherjee A, et al. Oriented 2D covalent organic framework thin films on single-layer graphene[J]. Science, 2011, 332(6026): 228-231. |
| 72 | Gao X, Zhu Y H, Yi D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy[J]. Science Advances, 2018, 4(7): eaat6378. |
| 73 | Li X S, Cai W W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. |
| 74 | Zhuang B Z, Li S Y, Li S Y, et al. Ways to eliminate PMMA residues on graphene: superclean graphene[J]. Carbon, 2021, 173: 609-636. |
| 75 | Liang X L, Sperling B A, Calizo I, et al. Toward clean and crackless transfer of graphene[J]. ACS Nano, 2011, 5(11): 9144-9153. |
| 76 | Qi P W, Huang Y N, Yao Y Z, et al. Wax-assisted crack-free transfer of monolayer CVD graphene: extending from standalone to supported copper substrates[J]. Applied Surface Science, 2019, 493: 81-86. |
| 77 | Wang Z, Liu W L, Shao J X, et al. Cyclododecane-based high-intactness and clean transfer method for fabricating suspended two-dimensional materials[J]. Nature Communications, 2024, 15(1): 6957. |
| 78 | Kim M J, Moreira G, Lisi N, et al. Solvent-free transfer of monolayer graphene with recrystallized cyclododecane[J]. Applied Physics Letters, 2023, 123(21): 211602. |
| 79 | Yang S Y, Oh J G, Jung D Y, et al. Metal-etching-free direct delamination and transfer of single-layer graphene with a high degree of freedom[J]. Small, 2015, 11(2): 175-181. |
| 80 | Zhang Z K, Du J H, Zhang D D, et al. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes[J]. Nature Communications, 2017, 8: 14560. |
| 81 | Cha S, Cha M, Lee S, et al. Low-temperature, dry transfer-printing of a patterned graphene monolayer[J]. Scientific Reports, 2015, 5: 17877. |
| 82 | He G W, Huang S Q, Villalobos L F, et al. Synergistic CO2-sieving from polymer with intrinsic microporosity masking nanoporous single-layer graphene[J]. Advanced Functional Materials, 2020, 30(39): 2003979. |
| 83 | Kocaman C, Bondaz L, Rezaei M, et al. Direct synthesis of nanocrystalline single-layer porous graphene for hydrogen sieving[J]. Carbon, 2024, 221: 118866. |
| 84 | Hsu K J, Li S X, Micari M, et al. Graphene membranes with pyridinic nitrogen at pore edges for high-performance CO2 capture[J]. Nature Energy, 2024, 9: 964-974. |
| 85 | Dakhchoune M, Duan X K, Villalobos L F, et al. Rapid gas transport from block-copolymer templated nanoporous carbon films[J]. Industrial & Engineering Chemistry Research, 2021, 60(44): 16100-16108. |
| 86 | Zhao K N, Lee W C, Rezaei M, et al. Tuning pore size in graphene in the angstrom regime for highly selective ion-ion separation[J]. ACS Nano, 2024, 18(7): 5571-5580. |
| 87 | O'Hern S C, Jang D, Bose S M, et al. Nanofiltration across defect-sealed nanoporous monolayer graphene[J]. Nano Letters, 2015, 15(5): 3254-3260. |
| 88 | Kafiah F M, Khan Z, Ibrahim A, et al. Monolayer graphene transfer onto polypropylene and polyvinylidenedifluoride microfiltration membranes for water desalination[J]. Desalination, 2016, 388: 29-37. |
| 89 | Kidambi P R, Jang D, Idrobo J C, et al. Nanoporous atomically thin graphene membranes for desalting and dialysis applications[J]. Advanced Materials, 2017, 29(33): 1700277. |
| 90 | Kidambi P R, Boutilier M S H, Wang L D, et al. Selective nanoscale mass transport across atomically thin single crystalline graphene membranes[J]. Advanced Materials, 2017, 29(19): 1605896. |
| 91 | O'Hern S C, Stewart C A, Boutilier M S H, et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene[J]. ACS Nano, 2012, 6(11): 10130-10138. |
| 92 | Qin Y Z, Hu Y Y, Koehler S, et al. Ultrafast nanofiltration through large-area single-layered graphene membranes[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9239-9244. |
| 93 | Lu Y Q, Zhang L L, Shen L, et al. Monolayer graphene membranes for molecular separation in high-temperature harsh organic solvents[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2111360118. |
| 94 | Carta M, Malpass-Evans R, Croad M, et al. An efficient polymer molecular sieve for membrane gas separations[J]. Science, 2013, 339(6117): 303-307. |
| 95 | Yang J J, Gong D, Li G H, et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules[J]. Advanced Materials, 2018, 30(16): 1705775. |
| 96 | Wang Y H, Jin D H, Ma Q, et al. A MOF glass membrane for gas separation[J]. Angewandte Chemie International Edition, 2020, 59(11): 4365-4369. |
| 97 | Llosa Tanco M A, Medrano J A, Cechetto V, et al. Hydrogen permeation studies of composite supported alumina-carbon molecular sieves membranes: separation of diluted hydrogen from mixtures with methane[J]. International Journal of Hydrogen Energy, 2021, 46(37): 19758-19767. |
| 98 | Yuan Z, He G W, Faucher S, et al. Direct chemical vapor deposition synthesis of porous single-layer graphene membranes with high gas permeances and selectivities[J]. Advanced Materials, 2021, 33(44): 2104308. |
| 99 | Guo W, Mahurin S M, Unocic R R, et al. Broadening the gas separation utility of monolayer nanoporous graphene membranes by an ionic liquid gating[J]. Nano Letters, 2020, 20(11): 7995-8000. |
| 100 | Shen L, Shi Q, Zhang S P, et al. Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration[J]. Science Advances, 2021, 7(37): eabg6263. |
| 101 | Cheng C, Iyengar S A, Karnik R. Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes[J]. Nature Nanotechnology, 2021, 16(9): 989-995. |
| 102 | Song Y, Fang S Q, Xu N, et al. Solar transpiration-powered lithium extraction and storage[J]. Science, 2024, 385(6716): 1444-1449. |
| 103 | Feng R Z, Zhang X, Murugesan V, et al. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries[J]. Science, 2021, 372(6544): 836-840. |
| 104 | Zhou X C, Wang Z X, Epsztein R, et al. Intrapore energy barriers govern ion transport and selectivity of desalination membranes[J]. Science Advances, 2020, 6(48): eabd9045. |
| 105 | Zhang X P, Tu B, Cao Z W, et al. Anomalous mechanical and electrical interplay in a covalent organic framework monolayer membrane[J]. Journal of the American Chemical Society, 2023, 145(32): 17786-17794. |
| [1] | Yanan YANG, Shengran CHANG, Songlin XUE, Jianming PAN, Weihong XING. Progress of research on photo- and electric-driven to promote uranium and lithium extraction from seawater [J]. CIESC Journal, 2025, 76(5): 1927-1942. |
| [2] | Liao HE, Jun LI, Mengshu GAO, Dongyang LIU, Yuhao ZHANG, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress on aromatic hydrocarbons separation from petroleum hydrocarbons [J]. CIESC Journal, 2025, 76(5): 1909-1926. |
| [3] | Yingdong ZHAO, Peijun JI, Riyao CONG, Haichao FU, Jialong ZHANG, Pengzhong CHEN, Xiaojun PENG. Preparation and high-resolution lithography study of organic tin photoresists containing acrylates [J]. CIESC Journal, 2025, 76(4): 1820-1830. |
| [4] | Yinjie ZHOU, Sibei JI, Songyang HE, Xu JI, Ge HE. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks [J]. CIESC Journal, 2025, 76(3): 1093-1101. |
| [5] | Xiaonan YOU, Xiaoqiang FAN, Yao YANG, Jingdai WANG, Yongrong YANG. Modeling method of depressurization separation process of the mixture of high-pressure polyethylene and supercritical ethylene [J]. CIESC Journal, 2025, 76(2): 695-706. |
| [6] | Jiaxin CUI, Mengfan YIN, Tao ZHENG, Han LIU, Rui ZHANG, Zhichang LIU, Haiyan LIU, Chunming XU, Xianghai MENG. Application of aluminum-copper bimetallic ionic liquids in 1-hexene/n-hexane separation [J]. CIESC Journal, 2025, 76(2): 686-694. |
| [7] | Jingyu JIA, Deqi KONG, Yuanhui SHEN, Donghui ZHANG, Wenbin LI, Zhongli TANG. Simulation and analysis of ammonia separation process by pressure swing adsorption from synthetic ammonia reactor-off gas [J]. CIESC Journal, 2025, 76(2): 718-730. |
| [8] | Xiangjun MENG, Linrui YANG, Lipei PENG, Xiankui YANG, Yingxi HUA, Renren ZHANG, Kaitian ZHENG, Chunjian XU. Design and control of nitrogen trifluoride distillation separation process [J]. CIESC Journal, 2025, 76(2): 707-717. |
| [9] | Linrui YANG, Jianyi LIU, Ling LI, Yongchao HE, Kaitian ZHENG, Jianpo REN, Chunjian XU. Process design and energy saving for benzene/cyclohexane/cyclohexene extractive distillation process [J]. CIESC Journal, 2025, 76(2): 731-743. |
| [10] | Ziyi XU, Yang XI, Zewen SONG, Haijun ZHOU. Advances in the application of carbon nanomaterials for zinc ion batteries [J]. CIESC Journal, 2025, 76(1): 40-52. |
| [11] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
| [12] | Huihui XIE, Jiaxin JIANG, Xin WANG, Zheng LI, Xin GUO, Xinran LYU, Lingyun WANG, Yang LIU. Study on transport separation of platinum and palladium by deep eutectic solvent polymer inclusion membrane [J]. CIESC Journal, 2024, 75(S1): 235-243. |
| [13] | Zhi QIU, Ming TAN. Preparation of polyionic liquid membrane and its application in low-sodium and high-potassium healthy soy sauce [J]. CIESC Journal, 2024, 75(S1): 244-250. |
| [14] | Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect [J]. CIESC Journal, 2024, 75(S1): 67-75. |
| [15] | Shugang HU, Guoqing TIAN, Wenjuan LIU, Guangfei XU, Huaqing LIU, Jian ZHANG, Yanlong WANG. Preparation of nanoscale zero-valent iron and its application of reduction and oxidation technology [J]. CIESC Journal, 2024, 75(9): 3041-3055. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||