CIESC Journal ›› 2025, Vol. 76 ›› Issue (1): 40-52.DOI: 10.11949/0438-1157.20240741
• Reviews and monographs • Previous Articles Next Articles
Ziyi XU(), Yang XI, Zewen SONG, Haijun ZHOU(
)
Received:
2024-07-01
Revised:
2024-09-28
Online:
2025-02-08
Published:
2025-01-25
Contact:
Haijun ZHOU
通讯作者:
周海骏
作者简介:
徐子易(2001—),男,硕士研究生,xzy88827@163.com
基金资助:
CLC Number:
Ziyi XU, Yang XI, Zewen SONG, Haijun ZHOU. Advances in the application of carbon nanomaterials for zinc ion batteries[J]. CIESC Journal, 2025, 76(1): 40-52.
徐子易, 席阳, 宋泽文, 周海骏. 碳纳米材料在锌离子电池中的应用研究进展[J]. 化工学报, 2025, 76(1): 40-52.
Fig.1 Growth(a), dissolution(b) and regeneration(c) of zinc dendrites in aqueous solution containing 5 mol·L-1 KOH and 0.15 mol·L-1 ZnO[31]; Schematic diagram of zinc dendrite growth, corrosion and passivation (d)[35]
Fig.2 Galvanized/stripped in zinc foil (a) and inside zinc/carbon nanotube foam (b)[42]; Cross section (c), surface SEM image (d), and element map (e) of the VO2(B)-MWCNTs electrode[43]
Fig.3 Epitaxial metal electrodeposition design (a) and SEM image for galvanizing graphene coating on stainless steel (b)[19]; CV carves at 0.1 mV·s-1 (c) and charge and discharge curves at 100 mA·g-1 (d) of VO2(D)[45]; Zinc deposition process on CC and N-VG@CC electrodes (e)[18]
Fig.4 Cycle performance when current density is 0.1 mA·cm-2 and charge and discharge capacity is 0.5 mAh·cm-2 (a) [51]; GCD curves at different current densities (b) and cyclic properties of Mn2+/Zn2+ HB (c)[52]
Fig.5 (a) Galvanizing/stripping CE on copper foil with/without CNG at 0.5 mA·cm-2 current density[60]; (b) Diagram of ZGL@Zn galvanizing during Zn2+ deposition[61]; (c) PEDOT:PSS/GS@Zn negative galvanizing behavior[62]
Fig.6 (a) Zinc deposition on zinc negative electrode with/without DMF-CDs[65]; (b) Zinc deposition on zinc negative electrode with or without GO electrolyte[24]; (c) NSQD layer is conducive to inhibiting dendrite growth and HER[66]
Fig.7 (a) SEM image of CG separator[69]; (c) Effect of different partitions on the cyclic performance of Zn/MnO2 batteries at a current density of 0.5 A·g-1[70]; (b) Design drawing of glass fiber diaphragm and Janus diaphragm [71]; (d) Transmission behavior of SO42- and H+ by glass fiber membranes and Janus membranes[72]
碳纳米材料的应用 | 优点 | 局限性 |
---|---|---|
作为电极材料 | 提高电极的电荷传输能力和反应活性 | 储锌能力有限,复合材料的制备工艺复杂 |
作为保护层 | 抑制电极在充放电过程中发生腐蚀和枝晶生长 | 保护层的制备工艺需要精细控制,保护层在循环过程中易脱落 |
作为电解质添加剂 | 提高电解质的离子传输性能和稳定性,改善电池的性能 | 电解质添加剂的用量和种类需要精确控制 |
对隔膜进行改性 | 提高隔膜的机械强度、热稳定性和离子选择性 | 工艺复杂,难以确保材料在隔膜中的均匀分布和稳定性,电池能量密度、循环寿命和安全性要求高 |
Table 1 Advantages and limitations of carbon nanomaterials in different applications
碳纳米材料的应用 | 优点 | 局限性 |
---|---|---|
作为电极材料 | 提高电极的电荷传输能力和反应活性 | 储锌能力有限,复合材料的制备工艺复杂 |
作为保护层 | 抑制电极在充放电过程中发生腐蚀和枝晶生长 | 保护层的制备工艺需要精细控制,保护层在循环过程中易脱落 |
作为电解质添加剂 | 提高电解质的离子传输性能和稳定性,改善电池的性能 | 电解质添加剂的用量和种类需要精确控制 |
对隔膜进行改性 | 提高隔膜的机械强度、热稳定性和离子选择性 | 工艺复杂,难以确保材料在隔膜中的均匀分布和稳定性,电池能量密度、循环寿命和安全性要求高 |
1 | Chen Y Q, Kang Y Q, Zhao Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 2021, 59: 83-99. |
2 | Peng Z, Li Y H, Ruan P C, et al. Metal-organic frameworks and beyond: the road toward zinc-based batteries[J]. Coordination Chemistry Reviews, 2023, 488: 215190. |
3 | Aizudin M, Fu W Q, Pottammel R P, et al. Recent advancements of graphene-based materials for zinc-based batteries: beyond lithium-ion batteries[J]. Small, 2024, 20(2): 2305217. |
4 | Jia Y K, Liu B H, Hong Z G, et al. Safety issues of defective lithium-ion batteries: identification and risk evaluation[J]. Journal of Materials Chemistry A, 2020, 8(25): 12472-12484. |
5 | Zhang N, Chen X Y, Yu M, et al. Materials chemistry for rechargeable zinc-ion batteries[J]. Chemical Society Reviews, 2020, 49(13): 4203-4219. |
6 | Li C P, Xie X S, Liang S Q, et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries[J]. Energy & Environmental Materials, 2020, 3(2): 146-159. |
7 | Song M, Tan H, Chao D L, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564. |
8 | Wang S B, Ran Q, Yao R Q, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries[J]. Nature Communications, 2020, 11(1): 1634. |
9 | Zhang Q, Luan J Y, Tang Y G, et al. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(32): 13180-13191. |
10 | Wu L S, Dong Y F. Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries[J]. Energy Storage Materials, 2021, 41: 715-737. |
11 | Takakura A, Beppu K, Nishihara T, et al. Strength of carbon nanotubes depends on their chemical structures[J]. Nature Communications, 2019, 10(1): 3040. |
12 | Krasnova A O, Glebova N V, Kastsova A G, et al. Thermal stabilization of nafion with nanocarbon materials[J]. Polymers, 2023, 15(9): 2070. |
13 | Wang H, He M, Zhang Y. Carbon nanotube films: preparation and application in flexible electronics[J]. Acta Physico-chimica Sinica, 2019, 35(11): 1207-1223. |
14 | Kurbanoglu S, Ozkan S A. Electrochemical carbon based nanosensors: a promising tool in pharmaceutical and biomedical analysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 439-457. |
15 | 王若男, 蒲苏丹, 李淑荣, 等. 基于碳纳米材料构建传感器用于抗坏血酸、尿酸和多巴胺检测的研究进展[J]. 微纳电子技术, 2023, 60(5): 671-681. |
Wang R N, Pu S D, Li S R, et al. Research progress in the construction of sensors based on carbon nanomaterials for the detection of ascorbic acid, uric acid and dopamine[J]. Micronanoelectronic Technology, 2023, 60(5): 671-681. | |
16 | Dai L M, Xue Y H, Qu L T, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews, 2015, 115(11): 4823-4892. |
17 | Wu L S, Zhang M H, Xu W, et al. Recent advances in carbon materials for flexible zinc ion batteries[J]. New Carbon Materials, 2022, 37(5): 827-851. |
18 | Cao Q H, Gao H, Gao Y, et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries[J]. Advanced Functional Materials, 2021, 31(37): 2103922. |
19 | Zheng J X, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648. |
20 | Li Y J, Liao X Y, Xie B, et al. Hollow VO2 microspheres anchored on graphene as advanced cathodes for aqueous zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2024, 662: 404-412. |
21 | Mao C W, Chang Y X, Zhao X T, et al. Functional carbon materials for high-performance Zn metal anodes[J]. Journal of Energy Chemistry, 2022, 75: 135-153. |
22 | Xia A L, Pu X M, Tao Y Y, et al. Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries[J]. Applied Surface Science, 2019, 481: 852-859. |
23 | Zhou J H, Xie M, Wu F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries[J]. Advanced Materials, 2021, 33(33): 2101649. |
24 | Abdulla J, Cao J, Zhang D D, et al. Elimination of zinc dendrites by graphene oxide electrolyte additive for zinc-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(5): 4602-4609. |
25 | 赵晴, 朱梦媛, 丁玉寅, 等. 锌离子电池正极材料的研究进展[J]. 化工科技, 2024, 32 (2): 67-74.. |
Zhao Q, Zhu M Y, Ding Y Y, et al. Research progress on cathode materials for zinc-ion batteries[J]. Science & Technology in Chemical Industry, 2024, 32 (2): 67-74. | |
26 | Chen D, Lu M J, Cai D, et al. Recent advances in energy storage mechanism of aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 712-726. |
27 | Xu C J, Li B H, Du H D, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935. |
28 | Li T C, Fang D L, Zhang J T, et al. Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes[J]. Journal of Materials Chemistry A, 2021, 9(10): 6013-6028. |
29 | Kang L T, Cui M W, Jiang F Y, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries[J]. Advanced Energy Materials, 2018, 8(25): 1801090. |
30 | Lu W J, Xie C X, Zhang H M, et al. Inhibition of zinc dendrite growth in zinc-based batteries[J]. ChemSusChem, 2018, 11(23): 3996-4006. |
31 | Yufit V, Tariq F, Eastwood D S, et al. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries[J]. Joule, 2019, 3(2): 485-502. |
32 | Zhao Z M, Zhao J W, Hu Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy & Environmental Science, 2019, 12(6): 1938-1949. |
33 | Hoang T K A, Doan T N L, Sun K E K, et al. Corrosion chemistry and protection of zinc & zinc alloys by polymer-containing materials for potential use in rechargeable aqueous batteries[J]. RSC Advances, 2015, 5(52): 41677-41691. |
34 | Xiong W L, Yang D J, Hoang T K A, et al. Controlling the sustainability and shape change of the zinc anode in rechargeable aqueous Zn/LiMn2O4 battery[J]. Energy Storage Materials, 2018, 15: 131-138. |
35 | Tang B Y, Shan L T, Liang S Q, et al. Issues and opportunities facing aqueous zinc-ion batteries[J]. Energy & Environmental Science, 2019, 12(11): 3288-3304. |
36 | Lu Q Q, Jie Y L, Meng X Q, et al. Carbon materials for stable Li metal anodes: challenges, solutions, and outlook[J]. Carbon Energy, 2021, 3(6): 957-975. |
37 | Zhou Y M, Li W Y, Xie Y H, et al. Vertical graphene film enables high-performance quasi-solid-state planar zinc-ion microbatteries[J]. ACS Applied Materials & Interfaces, 2023, 15(7): 9486-9493. |
38 | Zhou J H, Xie M, Wu F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries[J]. Advanced Materials, 2022, 34(1): e2106897. |
39 | Zeng Y X, Zhang X Y, Qin R F, et al. Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries[J]. Advanced Materials, 2019, 31(36): e1903675. |
40 | Shanthappa R, Kakarla A K, Narsimulu D, et al. Multi-walled carbon nanotubes interlinked vanadium selenite nanocomposites as a positive electrode for high-performance aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2023, 935: 168102. |
41 | Cao J Y, Xue Y T, Ji Z Y, et al. CoNi hexacyanoferrate nanoparticles anchored on carbon nanotubes as superior cathode materials for rechargeable aqueous zinc-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111413. |
42 | Zhou Y R, Wang X N, Shen X F, et al. 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility[J]. Journal of Materials Chemistry A, 2020, 8(23): 11719-11727. |
43 | Shi J J, Wang S L, Chen X, et al. An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability[J]. Advanced Energy Materials, 2019, 9(37): 1901957. |
44 | Ma H L, Chen R Y, Liu B B, et al. Synthesis of ultrasmall vanadium ferricyanide nanocrystallines with the aidance of graphene self-assembled fibers towards reinforced zinc storage performance[J]. Chemical Engineering Journal, 2024, 489: 151112. |
45 | Wu L C, Li X Y, Lu G L, et al. Carbon quantum dot-assisted VO2(D) welding on holey graphene for zinc-ion battery cathode materials[J]. Journal of Electroanalytical Chemistry, 2024, 953: 118006. |
46 | Wu B K, Guo B B, Chen Y Z, et al. High zinc utilization aqueous zinc ion batteries enabled by 3D printed graphene arrays[J]. Energy Storage Materials, 2023, 54: 75-84. |
47 | Wu Y Z, Wang M C, Tao Y, et al. Electrochemically derived graphene-like carbon film as a superb substrate for high-performance aqueous Zn-ion batteries[J]. Advanced Functional Materials, 2020, 30(5): 1907120. |
48 | Wu J E, Liu C, Zhang H, et al. Regulation of the electrochemical plating/stripping process for Zn: multifunctional effects of N, S-codoped carbon dots[J]. The Journal of Physical Chemistry Letters, 2022, 13(51): 11883-11891. |
49 | Song Y L, Chen Y X, Wang Z F, et al. Defective ZnO x @porous carbon nanofiber network inducing dendrite-free zinc plating as zinc metal anode for high-performance aqueous rechargeable Zn/Na4Mn9O18 battery based on hybrid electrolyte[J]. Journal of Power Sources, 2022, 518: 230761. |
50 | Yang Y, Liu C Y, Lv Z H, et al. Redistributing Zn-ion flux by interlayer ion channels in Mg-Al layered double hydroxide-based artificial solid electrolyte interface for ultra-stable and dendrite-free Zn metal anodes[J]. Energy Storage Materials, 2021, 41: 230-239. |
51 | Dong L B, Yang W, Yang W, et al. Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors[J]. Chemical Engineering Journal, 2020, 384: 123355. |
52 | Li M, He Q, Li Z L, et al. A novel dendrite-free Mn2+/Zn2+ hybrid battery with 2.3 V voltage window and 11000-cycle lifespan[J]. Advanced Energy Materials, 2019, 9(29): 1901469. |
53 | Huang J Q, Hou Z, Gao P S, et al. A freestanding hydroxylated carbon nanotube film boosting the stability of Zn metal anodes[J]. Materials Today Communications, 2022, 32: 103939. |
54 | Lin W H, Liu S F, Gull S, et al. Nanoporous core-shell-structured multi-wall carbon nanotube/graphene oxide nanoribbons as cathodes and protection layer for aqueous zinc-ion capacitors: mechanism study of zinc dendrite suppression by in situ transmission X-ray microscopy[J]. Journal of Power Sources, 2022, 541: 231627. |
55 | Khamsanga S, Uyama H, Nuanwat W, et al. Polypyrrole/reduced graphene oxide composites coated zinc anode with dendrite suppression feature for boosting performances of zinc ion battery[J]. Scientific Reports, 2022, 12(1): 8689. |
56 | Xie S Y, Li Y, Li X, et al. Stable zinc anodes enabled by zincophilic Cu nanowire networks[J]. Nano-Micro Letters, 2021, 14(1): 39. |
57 | Wang M, Wang Q Q, Yao H J, et al. Interfacial regulation and protection by conductive graphene coating induces highly reversible zinc behavior for durable aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2023, 947: 169678. |
58 | Guo J, Zhang W L, Yin J, et al. Zincophilic laser-scribed graphene interlayer for homogeneous zinc deposition and stable zinc-ion batteries[J]. Energy Technology, 2021, 9(10): 2100490. |
59 | Zhou Z B, Zhang Y M, Chen P, et al. Graphene oxide-modified zinc anode for rechargeable aqueous batteries[J]. Chemical Engineering Science, 2019, 194: 142-147. |
60 | Zhang X T, Li J X, Liu D Y, et al. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer[J]. Energy & Environmental Science, 2021, 14(5): 3120-3129. |
61 | Gan H, Wu J, Li R, et al. Ultra-stable and deeply rechargeable zinc metal anode enabled by a multifunctional protective layer[J]. Energy Storage Materials, 2022, 47: 602-610. |
62 | Qiu M H, Wang D, Tawiah B, et al. Constructing PEDOT: PSS/graphene sheet nanofluidic channels to achieve dendrite-free Zn anode[J]. Composites Part B: Engineering, 2021, 215: 108798. |
63 | Li Y, Guo Y F, Li Z X, et al. Carbon-based nanomaterials for stabilizing zinc metal anodes towards high-performance aqueous zinc-ion batteries[J]. Energy Storage Materials, 2024, 67: 103300. |
64 | Song T B, Huang Z H, Zhang X R, et al. Nitrogen-doped and sulfonated carbon dots as a multifunctional additive to realize highly reversible aqueous zinc-ion batteries[J]. Small, 2023, 19(31): e2205558. |
65 | Zhang H, Luo Z, Deng W T, et al. Interfacial reconstruction via electronegative sulfonated carbon dots in hybrid electrolyte for ultra-durable zinc battery[J]. Chemical Engineering Journal, 2023, 461: 142105. |
66 | Wang F F, Lu H T, Zhu H B, et al. Mitigating the interfacial concentration gradient by negatively charged quantum dots toward dendrite-free Zn anodes[J]. Energy Storage Materials, 2023, 58: 215-221. |
67 | Han W W, Lee H, Liu Y Z, et al. Toward highly reversible aqueous zinc-ion batteries: nanoscale-regulated zinc nucleation via graphene quantum dots functionalized with multiple functional groups[J]. Chemical Engineering Journal, 2023, 452: 139090. |
68 | Zhang H, Guo R T, Li S, et al. Graphene quantum dots enable dendrite-free zinc ion battery[J]. Nano Energy, 2022, 92: 106752. |
69 | Cao J, Zhang D D, Gu C, et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries[J]. Advanced Energy Materials, 2021, 11(29): 2101299. |
70 | Cao J, Zhang D D, Zhang X Y, et al. A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode[J]. Journal of Materials Chemistry A, 2020, 8(18): 9331-9344. |
71 | Li C, Sun Z T, Yang T, et al. Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes[J]. Advanced Materials, 2020, 32(33): e2003425. |
72 | Zhang X T, Li J X, Qi K W, et al. An ion-sieving Janus separator toward planar electrodeposition for deeply rechargeable Zn-metal anodes[J]. Advanced Materials, 2022, 34(38): e2205175. |
73 | Fang Y, Liu Y X, Qi L, et al. 2D graphdiyne: an emerging carbon material[J]. Chemical Society Reviews, 2022, 51(7): 2681-2709. |
74 | Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries[J]. Angewandte Chemie International Edition, 2022, 61(6): e202112304. |
[1] | Zhijiao JI, Xiaofang ZHANG, Wen GAN, Yunpeng XUE. Influence of support on the performance of single atom electrocatalyst for ammonia synthesis and the control strategy [J]. CIESC Journal, 2025, 76(1): 18-39. |
[2] | Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation [J]. CIESC Journal, 2025, 76(1): 231-240. |
[3] | Dewei WU, Zhengpeng WANG, Yue ZHOU, Xiaoning LI, Zhao CHEN, Zhuo LI, Chengwei LIU, Xuegang LI, Wende XIAO. Preparation of silicon carbon anode for lithium-ion batteries by fixed bed and lithium storage properties [J]. CIESC Journal, 2024, 75(S1): 300-308. |
[4] | Su TANG, Zi'ao ZHENG, Hanze WEI, Xiaoling XU, Xiaoqiang ZHAI. Preparation and thermal conductivity reinforcement of PMMA/PEG600/CNT composite shaped phase change materials [J]. CIESC Journal, 2024, 75(S1): 309-320. |
[5] | Dan PENG, Junjie LU, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress of functional electrolyte for high-voltage LiCoO2 battery [J]. CIESC Journal, 2024, 75(9): 3028-3040. |
[6] | Shuying WANG, Tao ZUO, Zhiwei SHI, Xiaoming FAN, Weixin ZHANG. Synthesis and sodium ion storage properties of cation exchange resin based mesoporous graphitic carbon [J]. CIESC Journal, 2024, 75(9): 3338-3347. |
[7] | Binglin BAI, Shen DU, Mingjia LI, Chuanqi ZHANG. Optical transmittance and electrical conductivity characteristics of single-walled carbon nanotube films based on water-phase exfoliation method [J]. CIESC Journal, 2024, 75(7): 2680-2687. |
[8] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[9] | Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia [J]. CIESC Journal, 2024, 75(5): 1843-1854. |
[10] | Lulu ZHAO, Erjun TANG, Xuteng XING, Shaojie LIU, Xiaomeng CHU, Na HU, Ze ZHANG. Effects of POSS modified graphene oxide in anti-corrosion and hydrophobic properties of coatings [J]. CIESC Journal, 2024, 75(5): 1977-1986. |
[11] | Yunxuan LI, Xinyue LIU, Xi CHEN, Wen LIU, Mingyue ZHOU, Xingying LAN. Energy storage technologies based on solid-liquid redox-targeting reactions: materials, devices, and kinetics [J]. CIESC Journal, 2024, 75(4): 1222-1240. |
[12] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[13] | Kaixuan LIU, Qinyuan JIANG, Fei WANG, Run LI, Ping ZHU, Kangkang WANG, Yonglu ZANG, Yanlong ZHAO, Rufan ZHANG. Controlled synthesis of high-density ultralong carbon nanotubes: progress and prospects [J]. CIESC Journal, 2024, 75(4): 1355-1369. |
[14] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[15] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 211
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||