CIESC Journal ›› 2025, Vol. 76 ›› Issue (5): 2011-2025.DOI: 10.11949/0438-1157.20240819
• Reviews and monographs • Previous Articles Next Articles
Haotian AN(
), Zhangye HAN, Muyao LU, Awu ZHOU(
), Jianrong LI(
)
Received:2024-07-18
Revised:2024-08-28
Online:2025-06-13
Published:2025-05-25
Contact:
Awu ZHOU, Jianrong LI
通讯作者:
周阿武,李建荣
作者简介:安昊天(1997—),男,博士研究生,anhaotian@emails.bjut.edu.cn
基金资助:CLC Number:
Haotian AN, Zhangye HAN, Muyao LU, Awu ZHOU, Jianrong LI. Promoting industrial application of MOF: scale-up preparation and shaping[J]. CIESC Journal, 2025, 76(5): 2011-2025.
安昊天, 韩章烨, 陆慕瑶, 周阿武, 李建荣. 推进MOF产业化应用:宏量制备与成型[J]. 化工学报, 2025, 76(5): 2011-2025.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 (a) TSE setup used for continuous mechanochemical synthesis of UiO-66-NH2; (b) Water-assisted mechanochemical procedure for green synthesis of zirconium MOF[38]
Fig.7 Surface functionalization of ITO electrodes with carboxylic acid groups enables direct electrosynthesis of MIL-101(Fe) films on the inert conducting support[45]
Fig.8 MOF-808_15 (red), MOF-808_60 (blue) and MOF-808_120 (green): (a) controlled-heating ramp used in the preparation of MOF-808 (continuous lines) and control materials (dashed lines); (b) powder X-ray diffractograms; (c) N2 adsorption at 77 K; (d) SEM images (scale bar: 1 μm)[59]
| 宏量制备方法 | 典型MOF | 温度/℃ | 时间 | 溶剂 | 金属源 | 时空产率/ (kg/(m3·d)) | 文献 |
|---|---|---|---|---|---|---|---|
| 加速老化法 | Cd-MOF | 45 | 4 d | — | CdO | — | [ |
| 水热法/溶剂热法 | UiO-66 | 120 | 24 h | DMF | ZrCl4 | — | [ |
| HKUST-1 | 90 | 12 min | DMF、乙醇、水 | Cu(NO3)2·H2O | 5.8 | [ | |
| MOF-5 | 120 | 12 min | DMF | Zn(NO3)2·6H2O | — | ||
| IRMOF-3 | 120 | 12 min | DMF | Zn(NO3)2·6H2O | — | ||
| UiO-66 | 140 | 15 min | DMF | ZrCl4 | — | ||
| 常温快速合成法/ 溶剂回流法 | UiO-66-(COOH)2 | 100 | 16 h | 水 | ZrCl4 | 96 | [ |
| MIP-202(Zr) | 120 | 1 h | 水 | ZrCl4 | 7030 | [ | |
| MOF-801(Zr) | 室温 | 5.5 h | 水 | ZrOCl2·8H2O | 168 | [ | |
| NKMOF-8-Br | 室温 | 1 min | 乙腈 | CuI | — | [ | |
| Cu-AD-SA | 80 | 24 h | DMF、水 | Cu(NO3)2·3H2O | 160 | [ | |
| 碱辅助法 | MOF-5 | 室温 | 24 h | DMF | Zn(NO3)2·6H2O | — | [ |
| MIL-53(Al) | 室温 | 7 d | 水 | Al(NO3)3·9H2O | — | ||
| MOF-74 | 室温 | 20 h | 水 | Zn(CH3COO)2·2H2O | — | ||
| MOF-303 | 120 | 6 h | 水 | AlCl3·6H2O | 179.5 | [ | |
| 机械化学法 | ZIF-8 | 室温 | 96 h | — | ZnO | — | [ |
| ZIF-8 | 室温 | 2 h | 水 | Zn(CH3COO)2·2H2O | — | [ | |
| MOF-74(Zn) | 室温 | 70 min | 水 | ZnO | — | [ | |
| Fe-MIL-88A | 室温 | 10 min | — | FeCl3·6H2O | — | [ | |
| HKUST-1 | 室温 | — | 乙醇 | Cu(OH)2 | 144000 | [ | |
| ZIF-8 | 200 | — | — | [ZnCO3]2[Zn(OH)2]3 | 144000 | ||
| Al-Fum | 室温 | — | — | Al2(SO4)3·18H2O | 27000 | ||
| UiO-66 | 室温 | 90 min | 水 | 异丙醇锆 | — | [ | |
| 电化学法 | Fe-MIL-101 | 室温 | 14 h | DMF | FeCl2 | — | [ |
| Fe-MIL-101-NH2 | 室温 | 8 h | DMF | FeCl2 | — | ||
| Fe-MIL-100 | 室温 | 18 h | DMF | FeCl2 | — | ||
| Fe-MIL-88B-NH2 | 室温 | 2 h | DMF | FeCl2 | — | ||
| 微波辅助法 | MOF-74 (Ni) | 125 | 60 min | DMF、乙醇、水 | Ni(NO3)2·6H2O | — | [ |
| MOF-808 | 95 | 1 h | 水 | ZrOCl2·8H2O | — | [ | |
| 超声波辅助法 | CPO-27-Co | 70 | 75 min | DMF、水 | Co(NO3)2·6H2O | — | [ |
| MIL-53(Fe) | — | 7 min | DMF | FeCl3·6H2O | — | [ | |
| 喷雾干燥法 | UiO-66 | 220 | — | DMF | 乙酰丙酮锆 | — | [ |
| CID-1 | 220 | — | DMF | Zn(NO3)2·4H2O | — | ||
| 干凝胶转换法 | MIL-100(Fe) | 室温 | 30 min | 水 | Fe(NO3)3·9H2O | — | [ |
Table 1 Some key parameters related to the scale-up synthesis of MOFs
| 宏量制备方法 | 典型MOF | 温度/℃ | 时间 | 溶剂 | 金属源 | 时空产率/ (kg/(m3·d)) | 文献 |
|---|---|---|---|---|---|---|---|
| 加速老化法 | Cd-MOF | 45 | 4 d | — | CdO | — | [ |
| 水热法/溶剂热法 | UiO-66 | 120 | 24 h | DMF | ZrCl4 | — | [ |
| HKUST-1 | 90 | 12 min | DMF、乙醇、水 | Cu(NO3)2·H2O | 5.8 | [ | |
| MOF-5 | 120 | 12 min | DMF | Zn(NO3)2·6H2O | — | ||
| IRMOF-3 | 120 | 12 min | DMF | Zn(NO3)2·6H2O | — | ||
| UiO-66 | 140 | 15 min | DMF | ZrCl4 | — | ||
| 常温快速合成法/ 溶剂回流法 | UiO-66-(COOH)2 | 100 | 16 h | 水 | ZrCl4 | 96 | [ |
| MIP-202(Zr) | 120 | 1 h | 水 | ZrCl4 | 7030 | [ | |
| MOF-801(Zr) | 室温 | 5.5 h | 水 | ZrOCl2·8H2O | 168 | [ | |
| NKMOF-8-Br | 室温 | 1 min | 乙腈 | CuI | — | [ | |
| Cu-AD-SA | 80 | 24 h | DMF、水 | Cu(NO3)2·3H2O | 160 | [ | |
| 碱辅助法 | MOF-5 | 室温 | 24 h | DMF | Zn(NO3)2·6H2O | — | [ |
| MIL-53(Al) | 室温 | 7 d | 水 | Al(NO3)3·9H2O | — | ||
| MOF-74 | 室温 | 20 h | 水 | Zn(CH3COO)2·2H2O | — | ||
| MOF-303 | 120 | 6 h | 水 | AlCl3·6H2O | 179.5 | [ | |
| 机械化学法 | ZIF-8 | 室温 | 96 h | — | ZnO | — | [ |
| ZIF-8 | 室温 | 2 h | 水 | Zn(CH3COO)2·2H2O | — | [ | |
| MOF-74(Zn) | 室温 | 70 min | 水 | ZnO | — | [ | |
| Fe-MIL-88A | 室温 | 10 min | — | FeCl3·6H2O | — | [ | |
| HKUST-1 | 室温 | — | 乙醇 | Cu(OH)2 | 144000 | [ | |
| ZIF-8 | 200 | — | — | [ZnCO3]2[Zn(OH)2]3 | 144000 | ||
| Al-Fum | 室温 | — | — | Al2(SO4)3·18H2O | 27000 | ||
| UiO-66 | 室温 | 90 min | 水 | 异丙醇锆 | — | [ | |
| 电化学法 | Fe-MIL-101 | 室温 | 14 h | DMF | FeCl2 | — | [ |
| Fe-MIL-101-NH2 | 室温 | 8 h | DMF | FeCl2 | — | ||
| Fe-MIL-100 | 室温 | 18 h | DMF | FeCl2 | — | ||
| Fe-MIL-88B-NH2 | 室温 | 2 h | DMF | FeCl2 | — | ||
| 微波辅助法 | MOF-74 (Ni) | 125 | 60 min | DMF、乙醇、水 | Ni(NO3)2·6H2O | — | [ |
| MOF-808 | 95 | 1 h | 水 | ZrOCl2·8H2O | — | [ | |
| 超声波辅助法 | CPO-27-Co | 70 | 75 min | DMF、水 | Co(NO3)2·6H2O | — | [ |
| MIL-53(Fe) | — | 7 min | DMF | FeCl3·6H2O | — | [ | |
| 喷雾干燥法 | UiO-66 | 220 | — | DMF | 乙酰丙酮锆 | — | [ |
| CID-1 | 220 | — | DMF | Zn(NO3)2·4H2O | — | ||
| 干凝胶转换法 | MIL-100(Fe) | 室温 | 30 min | 水 | Fe(NO3)3·9H2O | — | [ |
Fig.13 ZUL-300 pellets prepared with different binders: (a) ZUL-300 (left) and ZUL-300@HPC (right), (b) ZUL-300 (left) and ZUL-300@PVB (right), (c) ZUL-300 (left) and ZUL-300@PVA (right)[87]
| 21 | Yang Q Y, Vaesen S, Ragon F, et al. A water stable metal-organic framework with optimal features for CO2 capture[J]. Angewandte Chemie International Edition, 2013, 52(39): 10316-10320. |
| 22 | Wang S J, Wahiduzzaman M, Davis L, et al. A robust zirconium amino acid metal-organic framework for proton conduction[J]. Nature Communications, 2018, 9(1): 4937. |
| 23 | Dai S, Nouar F, Zhang S J, et al. One-step room-temperature synthesis of metal (Ⅳ) carboxylate metal-organic frameworks[J]. Angewandte Chemie International Edition, 2021, 133(8): 4328-4334. |
| 24 | Geng S B, Lin E, Li X, et al. Scalable room-temperature synthesis of highly robust ethane-selective metal-organic frameworks for efficient ethylene purification[J]. Journal of the American Chemical Society, 2021, 143(23): 8654-8660. |
| 25 | Wang L, Wang K C, An H T, et al. A hydrolytically stable Cu(Ⅱ)-based metal-organic framework with easily accessible ligands for water harvesting[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 49509-49518. |
| 26 | Sánchez-Sánchez M, Getachew N, Díaz K, et al. Synthesis of metal-organic frameworks in water at room temperature: salts as linker sources[J]. Green Chemistry, 2015, 17(3): 1500-1509. |
| 27 | Fathieh F, Kalmutzki M J, Kapustin E A, et al. Practical water production from desert air[J]. Science Advances, 2018, 4(6): eaat3198. |
| 28 | Zheng Z L, Nguyen H L, Hanikel N, et al. High-yield, green and scalable methods for producing MOF-303 for water harvesting from desert air[J]. Nature Protocols, 2023, 18(1): 136-156. |
| 29 | An H T, Zhang X, Dong C, et al. Seed-aided green synthesis of metal-organic frameworks in water[J]. Green Chemical Engineering, 2023, 4(1): 64-72. |
| 30 | Martinez V, Stolar T, Karadeniz B, et al. Advancing mechanochemical synthesis by combining milling with different energy sources[J]. Nature Reviews Chemistry, 2023, 7(1): 51-65. |
| 31 | Friščić T. New opportunities for materials synthesis using mechanochemistry[J]. Journal of Materials Chemistry, 2010, 20(36): 7599-7605. |
| 32 | Głowniak S, Szczęśniak B, Choma J, et al. Mechanochemistry: toward green synthesis of metal-organic frameworks[J]. Materials Today, 2021, 46: 109-124. |
| 33 | Tanaka S, Kida K, Nagaoka T, et al. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework[J]. Chemical Communications, 2013, 49(72): 7884-7886. |
| 34 | Taheri M, Enge T G, Tsuzuki T. Water stability of cobalt doped ZIF-8: a quantitative study using optical analyses[J]. Materials Today Chemistry, 2020, 16: 100231. |
| 35 | Julien P A, Užarević K, Katsenis A D, et al. In situ monitoring and mechanism of the mechanochemical formation of a microporous MOF-74 framework[J]. Journal of the American Chemical Society, 2016, 138(9): 2929-2932. |
| 36 | Jeong H, Lee J. 3D-superstructured networks comprising Fe-MIL-88A metal-organic frameworks under mechanochemical conditions[J]. European Journal of Inorganic Chemistry, 2019, 2019(42): 4597-4600. |
| 37 | Crawford D, Casaban J, Haydon R, et al. Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent[J]. Chemical Science, 2015, 6(3): 1645-1649. |
| 38 | Karadeniz B, Howarth A J, Stolar T, et al. Benign by design: green and scalable synthesis of zirconium UiO-metal-organic frameworks by water-assisted mechanochemistry[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15841-15849. |
| 39 | Xu W, Chen H, Jie K C, et al. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation[J]. Angewandte Chemie International Edition, 2019, 58(15): 5018-5022. |
| 40 | Stolle A, Szuppa T, Leonhardt S E S, et al. Ball milling in organic synthesis: solutions and challenges[J]. Chemical Society Reviews, 2011, 40(5): 2317-2329. |
| 41 | James S L, Adams C J, Bolm C, et al. Mechanochemistry: opportunities for new and cleaner synthesis[J]. Chemical Society Reviews, 2012, 41(1): 413-447. |
| 42 | Friščić T, Mottillo C, Titi H M. Mechanochemistry for synthesis[J]. Angewandte Chemie International Edition, 2020, 59(3): 1018-1029. |
| 43 | Mueller U, Schubert M, Teich F, et al. Metal-organic frameworks—Prospective industrial applications[J]. Journal of Materials Chemistry, 2006, 16(7): 626-636. |
| 44 | Schäfer P, van der Veen M A, Domke K F. Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis[J]. Chemical Communications, 2016, 52(25): 4722-4725. |
| 45 | Wu W B, Decker G E, Weaver A E, et al. Facile and rapid room-temperature electrosynthesis and controlled surface growth of Fe-MIL-101 and Fe-MIL-101-NH2 [J]. ACS Central Science, 2021, 7(8): 1427-1433. |
| 46 | Phan P T, Hong J, Tran N, et al. The properties of microwave-assisted synthesis of metal-organic frameworks and their applications[J]. Nanomaterials, 2023, 13(2): 352. |
| 47 | Khan N A, Jhung S H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction[J]. Coordination Chemistry Reviews, 2015, 285: 11-23. |
| 48 | He Q Q, Zhan F Y, Wang H Y, et al. Recent progress of industrial preparation of metal-organic frameworks: synthesis strategies and outlook[J]. Materials Today Sustainability, 2022, 17: 100104. |
| 49 | Ryu U J, Jee S H, Rao P C, et al. Recent advances in process engineering and upcoming applications of metal-organic frameworks[J]. Coordination Chemistry Reviews, 2021, 426: 213544. |
| 50 | Thomas-Hillman I, Laybourn A, Dodds C, et al. Realising the environmental benefits of metal-organic frameworks: recent advances in microwave synthesis[J]. Journal of Materials Chemistry A, 2018, 6(25): 11564-11581. |
| 51 | Lai L S, Yeong Y F, Lau K K, et al. Effect of synthesis parameters on the formation of ZIF-8 under microwave-assisted solvothermal[J]. Procedia Engineering, 2016, 148: 35-42. |
| 52 | Choi J S, Son W J, Kim J, et al. Metal-organic framework MOF-5 prepared by microwave heating: factors to be considered[J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3): 727-731. |
| 53 | Seo Y K, Hundal G, Jang I T, et al. Microwave synthesis of hybrid inorganic-organic materials including porous Cu3(BTC)2 from Cu(Ⅱ)-trimesate mixture[J]. Microporous and Mesoporous Materials, 2009, 119(1/2/3): 331-337. |
| 54 | Couzon N, Ferreira M, Duval S, et al. Microwave-assisted synthesis of porous composites MOF-textile for the protection against chemical and nuclear hazards[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21497-21508. |
| 55 | Zhao Z X, Li X M, Huang S S, et al. Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2254-2261. |
| 56 | Albuquerque G H, Fitzmorris R C, Ahmadi M, et al. Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures[J]. CrystEngComm, 2015, 17(29): 5502-5510. |
| 57 | Chen C W, Feng X B, Zhu Q, et al. Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture[J]. Inorganic Chemistry, 2019, 58(4): 2717-2728. |
| 58 | Cho H Y, Yang D A, Kim J, et al. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating[J]. Catalysis Today, 2012, 185(1): 35-40. |
| 59 | González L, Gil-San-Millán R, Navarro J A R, et al. Green synthesis of zirconium MOF-808 for simultaneous phosphate recovery and organophosphorus pesticide detoxification in wastewater[J]. Journal of Materials Chemistry A, 2022, 10(37): 19606-19611. |
| 60 | Bergamelli F, Iannelli M, Marafie J A, et al. A commercial continuous flow microwave reactor evaluated for scale-up[J]. Organic Process Research & Development, 2010, 14(4): 926-930. |
| 61 | Suslick K S, Choe S B, Cichowlas A A, et al. Sonochemical synthesis of amorphous iron[J]. Nature, 1991, 353: 414-416. |
| 62 | Gedanken A. Using sonochemistry for the fabrication of nanomaterials[J]. Ultrasonics Sonochemistry, 2004, 11(2): 47-55. |
| 63 | Suslick K S, Hammerton D A, Cline R E. Sonochemical hot spot[J]. Journal of the American Chemical Society, 1986, 108(18): 5641-5642. |
| 64 | Haque E, Khan N A, Park J H, et al. Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study[J]. Chemistry, 2010, 16(3): 1046-1052. |
| 65 | Haque E, Jhung S H. Synthesis of isostructural metal-organic frameworks, CPO-27s, with ultrasound, microwave, and conventional heating: effect of synthesis methods and metal ions[J]. Chemical Engineering Journal, 2011, 173(3): 866-872. |
| 66 | Gordon J, Kazemian H, Rohani S. Rapid and efficient crystallization of MIL-53(Fe) by ultrasound and microwave irradiation[J]. Microporous and Mesoporous Materials, 2012, 162: 36-43. |
| 67 | Samborska K, Poozesh S, Barańska A, et al. Innovations in spray drying process for food and pharma industries[J]. Journal of Food Engineering, 2022, 321: 110960. |
| 68 | Barbosa J, Teixeira P. Development of probiotic fruit juice powders by spray-drying: a review[J]. Food Reviews International, 2017, 33(4): 335-358. |
| 69 | Carné-Sánchez A, Imaz I, Cano-Sarabia M, et al. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures[J]. Nature Chemistry, 2013, 5(3): 203-211. |
| 70 | Mitsuka Y, Nagashima K, Kobayashi H, et al. A seed-mediated spray-drying method for facile syntheses of Zr-MOF and a pillared-layer-type MOF[J]. Chemistry Letters, 2016, 45(11): 1313-1315. |
| 71 | Xu W Y, Dong J X, Li J P, et al. A novel method for the preparation of zeolite ZSM-5[J]. Journal of the Chemical Society, Chemical Communications, 1990(10): 755-756. |
| 72 | Koekkoek A J J, Degirmenci V, Hensen E J M. Dry gel conversion of organosilane templated mesoporous silica: from amorphous to crystalline catalysts for benzeneoxidation[J]. Journal of Materials Chemistry, 2011, 21(25): 9279-9289. |
| 73 | Luo Y S, Tan B Q, Liang X H, et al. Dry gel conversion synthesis and performance of glass-fiber MIL-100(Fe) composite desiccant material for dehumidification[J]. Microporous and Mesoporous Materials, 2020, 297: 110034. |
| 74 | Echigo T, Kimata M. Crystal chemistry and genesis of organic minerals: a review of oxalate and polycyclic aromatic hydrocarbon minerals[J]. The Canadian Mineralogist, 2010, 48(6): 1329-1357. |
| 75 | Mottillo C, Lu Y N, Pham M H, et al. Mineral neogenesis as an inspiration for mild, solvent-free synthesis of bulk microporous metal-organic frameworks from metal (Zn, Co) oxides[J]. Green Chemistry, 2013, 15(8): 2121-2131. |
| 76 | O’Keefe C A, Mottillo C, Vainauskas J, et al. NMR-enhanced crystallography aids open metal-organic framework discovery using solvent-free accelerated aging[J]. Chemistry of Materials, 2020, 32(10): 4273-4281. |
| 77 | Czaja A U, Trukhan N, Müller U. Industrial applications of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1284-1293. |
| 78 | Cong S Z, Yuan Y, Wang J X, et al. Highly water-permeable metal-organic framework MOF-303 membranes for desalination[J]. Journal of the American Chemical Society, 2021, 143(48): 20055-20058. |
| 79 | Chen Y F, Li S Q, Pei X K, et al. A solvent-free hot-pressing method for preparing metal-organic-framework coatings[J]. Angewandte Chemie International Edition, 2016, 55(10): 3419-3423. |
| 80 | Li W J, Tu M, Cao R, et al. Metal-organic framework thin films: electrochemical fabrication techniques and corresponding applications & perspectives[J]. Journal of Materials Chemistry A, 2016, 4(32): 12356-12369. |
| 81 | Cheng P, Kim M, Lim H, et al. A general approach to shaped MOF-containing aerogels toward practical water treatment application[J]. Advanced Sustainable Systems, 2020, 4(8): 2000060. |
| 82 | Lim G J H, Wu Y, Shah B B, et al. 3D-printing of pure metal-organic framework monoliths[J]. ACS Materials Letters, 2019, 1(1): 147-153. |
| 83 | Dhainaut J, Avci-Camur C, Troyano J, et al. Systematic study of the impact of MOF densification into tablets on textural and mechanical properties[J]. CrystEngComm, 2017, 19(29): 4211-4218. |
| 84 | Majchrzak-Kucęba I, Ściubidło A. Shaping metal-organic framework (MOF) powder materials for CO2 capture applications—A thermogravimetric study[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(6): 4139-4144. |
| 85 | Lv D F, Chen J Y, Yang K X, et al. Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework[J]. Chemical Engineering Journal, 2019, 375: 122074. |
| 86 | Park J, Chae Y S, Kang D W, et al. Shaping of a metal-organic framework-polymer composite and its CO2 adsorption performances from humid indoor air[J]. ACS Applied Materials & Interfaces, 2021, 13(21): 25421-25427. |
| 87 | Song Y F, Ke T, Shen J, et al. Shaped layered two-dimensional fluorinated metal-organic frameworks for highly efficient acetylene/ethylene separation[J]. Separation and Purification Technology, 2023, 323: 124377. |
| 88 | Zhang Y Y, Yuan S, Feng X, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control[J]. Journal of the American Chemical Society, 2016, 138(18): 5785-5788. |
| 1 | Feng L, Wang K Y, Lv X L, et al. Modular total synthesis in reticular chemistry[J]. Journal of the American Chemical Society, 2020, 142(6): 3069-3076. |
| 2 | Mukherjee S, Sensharma D, Chen K J, et al. Crystal engineering of porous coordination networks to enable separation of C2 hydrocarbons[J]. Chemical Communications, 2020, 56(72): 10419-10441. |
| 3 | Xu Y Y, Deng Y, Liu W, et al. Research progress of hydrogen energy and metal hydrogen storage materials[J]. Sustainable Energy Technologies and Assessments, 2023, 55: 102974. |
| 4 | Garg A, Almáši M, Saini R, et al. A highly stable terbium (Ⅲ) metal-organic framework MOF-76 (Tb) for hydrogen storage and humidity sensing[J]. Environmental Science and Pollution Research, 2023, 30(44): 98548-98562. |
| 5 | He T, Kong X J, Bian Z X, et al. Trace removal of benzene vapour using double-walled metal-dipyrazolate frameworks[J]. Nature Materials, 2022, 21(6): 689-695. |
| 6 | 李沐紫, 贾国伟, 赵砚珑, 等. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
| Li M Z, Jia G W, Zhao Y L, et al. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture[J]. CIESC Journal, 2023, 74(1): 365-379. | |
| 7 | 文一如, 付佳, 刘大欢. 基于机器学习的MOFs材料研究进展:能源气体吸附分离[J]. 化工学报, 2024, 75(4): 1370-1381. |
| Wen Y R, Fu J, Liu D H. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation[J]. CIESC Journal, 2024, 75(4): 1370-1381. | |
| 8 | Abdul Hamid M R, Qian Y T, Wei R C, et al. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: engineering prospects and challenges[J]. Journal of Membrane Science, 2021, 640: 119802. |
| 9 | Baniani A, Rivera M P, Lively R P, et al. Quantifying diffusion of organic liquids in a MOF component of MOF/polymer mixed-matrix membranes by high field NMR[J]. Journal of Membrane Science, 2021, 640: 119786. |
| 10 | Li D, Gao C Y, Zhang Y, et al. Unraveling the transition of ZIF-67-on-ZIF-8 core-shell structured dodecahedron formed by an oriented attachment mechanism from type Ⅱ to step-scheme for enhanced photocatalytic degradation of oxytetracycline hydrochloride[J]. Chemical Engineering Science, 2024, 300: 120668. |
| 11 | Zhou P Y, Lv J J, Huang X B, et al. Strategies for enhancing the catalytic activity and electronic conductivity of MOFs-based electrocatalysts[J]. Coordination Chemistry Reviews, 2023, 478: 214969. |
| 12 | Deng Q C, Zhang X D, Chang L, et al. The MOF/LDH derived heterostructured Co3O4/MnCo2O4 composite for enhanced degradation of levofloxacin by peroxymonosulfate activation[J]. Separation and Purification Technology, 2022, 294: 121182. |
| 13 | Li H Y, Wei Y L, Dong X Y, et al. Novel Tb-MOF embedded with viologen species for multi-photofunctionality: photochromism, photomodulated fluorescence, and luminescent pH sensing[J]. Chemistry of Materials, 2015, 27(4): 1327-1331. |
| 14 | Zhao Y L, Chen Q, Lv J, et al. Specific sensing of antibiotics with metal-organic frameworks based dual sensor system[J]. Nano Research, 2022, 15(7): 6430-6437. |
| 15 | Guan H Y, LeBlanc R J, Xie S Y, et al. Recent progress in the syntheses of mesoporous metal-organic framework materials[J]. Coordination Chemistry Reviews, 2018, 369: 76-90. |
| 16 | Kong X J, Li J R. An overview of metal-organic frameworks for green chemical engineering[J]. Engineering, 2021, 7(8): 1115-1139. |
| 17 | Kamal K, Bustam M A, Ismail M, et al. Optimization of washing processes in solvothermal synthesis of nickel-based MOF-74[J]. Materials, 2020, 13(12): 2741. |
| 18 | Seoane B, Castellanos S, Dikhtiarenko A, et al. Multi-scale crystal engineering of metal organic frameworks[J]. Coordination Chemistry Reviews, 2016, 307: 147-187. |
| 19 | Kim S N, Lee Y R, Hong S H, et al. Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis[J]. Catalysis Today, 2015, 245: 54-60. |
| 20 | Faustini M, Kim J, Jeong G Y, et al. Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets[J]. Journal of the American Chemical Society, 2013, 135(39): 14619-14626. |
| [1] | Jinyue WANG, Enze XIE, Hanze MA, Sheng YUAN, Guangwei HE, Zhongyi JIANG. Monoatomic layer separation membrane: progress and prospect [J]. CIESC Journal, 2025, 76(5): 1943-1959. |
| [2] | Junliang HUO, Zhiguo TANG, Zongjun QIU, Yuhua FENG, Xu JIANG, Leyi WANG, Yu YANG, Fanfan QIAO, Yifan HE, Jianliang YU. Experimental research on risk of freezing and plugging during CO2 pipeline venting under throttling effect [J]. CIESC Journal, 2025, 76(4): 1898-1908. |
| [3] | Xinmei ZHANG, Ao ZHANG, Dehua QIU, Xiaoshuang LIU, Chen CHEN. Dynamic domino effect assessment method based on thermal response mechanism of pool fire in tank farm [J]. CIESC Journal, 2025, 76(4): 1885-1897. |
| [4] | Ben’an CAI, Jianxin ZHANG, Chengjun LONG, Qiaochen DU, Xunjian CHE, Yiying ZHANG, Weihua CAI. Spray flash evaporation preparation of micro/nanoparticles [J]. CIESC Journal, 2025, 76(3): 1334-1345. |
| [5] | Bei PEI, Zhibin HAO, Tianxiang XU, Ziqi ZHONG, Rui LI, Chong JIA, Yulong DUAN. Effect of surfactants on fire extinguishing efficiency of salted double fluid fine water mist [J]. CIESC Journal, 2024, 75(9): 3369-3378. |
| [6] | Shugang HU, Guoqing TIAN, Wenjuan LIU, Guangfei XU, Huaqing LIU, Jian ZHANG, Yanlong WANG. Preparation of nanoscale zero-valent iron and its application of reduction and oxidation technology [J]. CIESC Journal, 2024, 75(9): 3041-3055. |
| [7] | Yanhui DAI, Qizhao XIONG, Qiang FANG, Dongxiao YANG, Yi WANG, Yang CHEN, Jinping LI, Libo LI. In situ steam-assisted method for one-step synthesis of hierarchically porous Cu-BTC [J]. CIESC Journal, 2024, 75(9): 3329-3337. |
| [8] | Jianwen ZHANG, Tingsheng ZHAO, Pingyu WAN, Qianlin WANG, Zhan DOU, Bo XU. Discussion on integrated security control in process industry [J]. CIESC Journal, 2024, 75(6): 2375-2384. |
| [9] | Bin SU, Haowei DONG, Zhenmin LUO, Jun DENG, Tao WANG, Fangming CHENG. Research progress on explosion dynamic characteristics and mechanism of hybrid mixtures [J]. CIESC Journal, 2024, 75(6): 2109-2122. |
| [10] | Rui CHANG, Ruirui XING, Xuehai YAN. Green and biorecyclable materials based on peptide noncovalent chemistry [J]. CIESC Journal, 2024, 75(4): 1317-1332. |
| [11] | Xi WU, Bo SUN, Yindong LIU, Chuanlei QI, Kaiyi CHEN, Luhai WANG, Chong XU, Yongfeng LI. Research progress in preparation technology of pitch-based carbon anode materials for sodium-ion batteries [J]. CIESC Journal, 2024, 75(4): 1270-1283. |
| [12] | Zhanzhu CHEN, Jinhua YE, Zhibin WANG, Zhi YANG, Lisi JIA, Ying CHEN. Efficient generation of droplets through three-dimensional fractal integrated coaxial flow channels [J]. CIESC Journal, 2024, 75(12): 4442-4452. |
| [13] | Yuming LI, Yanwen XU, Hongyu LIU, Lina MA, Yajun WANG. Synthesis and application of nickel-based phosphide in water electrolysis for hydrogen evolution [J]. CIESC Journal, 2024, 75(12): 4385-4402. |
| [14] | Bingyan SUN, Haiqing WANG, Yutao ZHANG, Sijie WANG. Research on time-varying competitive failure of safety interlock system actuators with non-constant failure rate [J]. CIESC Journal, 2024, 75(12): 4646-4653. |
| [15] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||