CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4442-4452.DOI: 10.11949/0438-1157.20240652
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Zhanzhu CHEN1,2(), Jinhua YE1,2, Zhibin WANG1,2(
), Zhi YANG1,2, Lisi JIA1,2, Ying CHEN1,2
Received:
2024-06-12
Revised:
2024-07-31
Online:
2025-01-03
Published:
2024-12-25
Contact:
Zhibin WANG
陈展珠1,2(), 叶锦华1,2, 王智彬1,2(
), 杨智1,2, 贾莉斯1,2, 陈颖1,2
通讯作者:
王智彬
作者简介:
陈展珠(1998—),女,硕士研究生,2569398764@qq.com
基金资助:
CLC Number:
Zhanzhu CHEN, Jinhua YE, Zhibin WANG, Zhi YANG, Lisi JIA, Ying CHEN. Efficient generation of droplets through three-dimensional fractal integrated coaxial flow channels[J]. CIESC Journal, 2024, 75(12): 4442-4452.
陈展珠, 叶锦华, 王智彬, 杨智, 贾莉斯, 陈颖. 三维分形集成共轴流通道实现液滴高效生成[J]. 化工学报, 2024, 75(12): 4442-4452.
流体 | 密度/(kg/m3) | 黏度/(Pa·s) | 界面张力/(mN/m) | |
---|---|---|---|---|
2%PVA溶液 | 1013.683 | 0.001498 | 5.08 | |
97%HDDA溶液 | 1027.73 | 0.004482 | 1.54 | |
0.7%洗涤剂溶液 | 1010.16 | 0.000579 |
Table 1 Experimental fluid properties
流体 | 密度/(kg/m3) | 黏度/(Pa·s) | 界面张力/(mN/m) | |
---|---|---|---|---|
2%PVA溶液 | 1013.683 | 0.001498 | 5.08 | |
97%HDDA溶液 | 1027.73 | 0.004482 | 1.54 | |
0.7%洗涤剂溶液 | 1010.16 | 0.000579 |
通道数 | 平均粒径/µm | 生成效率/(个/min) | 变异系数/% |
---|---|---|---|
单通道 | 1052 | 326 | 1.5 |
单级4通道 | 1054 | 1301 | 1.9 |
单级8通道 | 1055 | 2598 | 1.9 |
Table 2 Summary of important parameters of group Ⅰ flow experiment results
通道数 | 平均粒径/µm | 生成效率/(个/min) | 变异系数/% |
---|---|---|---|
单通道 | 1052 | 326 | 1.5 |
单级4通道 | 1054 | 1301 | 1.9 |
单级8通道 | 1055 | 2598 | 1.9 |
通道数 | 平均粒径/µm | 生成效率/(个/min) | 变异系数/% |
---|---|---|---|
单通道 | 956 | 873 | 6.9 |
单级4通道 | 957 | 3475 | 6.7 |
单级8通道 | 958 | 6944 | 6.6 |
Table 3 Summary of important parameters of group Ⅱ flow experiment results
通道数 | 平均粒径/µm | 生成效率/(个/min) | 变异系数/% |
---|---|---|---|
单通道 | 956 | 873 | 6.9 |
单级4通道 | 957 | 3475 | 6.7 |
单级8通道 | 958 | 6944 | 6.6 |
组别 | 单个通道分散相/ 连续相流量/(ml/min) | 单通道 | 双级16通道 | ||||
---|---|---|---|---|---|---|---|
平均粒径/µm | 生成速率/(个/min) | 变异系数/% | 平均粒径/µm | 生成速率/(个/min) | 变异系数/% | ||
1 | 0.1/2 | 1032 | 173 | 1.29 | 1035 | 2750 | 3.33 |
2 | 0.1/3 | 950 | 222 | 1.29 | 948 | 3580 | 2.71 |
3 | 0.2/4 | 925 | 481 | 0.94 | 933 | 7529 | 0.97 |
4 | 0.2/6 | 839 | 646 | 1.34 | 838 | 10391 | 2.30 |
Table 4 Droplet generation in double stages distributors
组别 | 单个通道分散相/ 连续相流量/(ml/min) | 单通道 | 双级16通道 | ||||
---|---|---|---|---|---|---|---|
平均粒径/µm | 生成速率/(个/min) | 变异系数/% | 平均粒径/µm | 生成速率/(个/min) | 变异系数/% | ||
1 | 0.1/2 | 1032 | 173 | 1.29 | 1035 | 2750 | 3.33 |
2 | 0.1/3 | 950 | 222 | 1.29 | 948 | 3580 | 2.71 |
3 | 0.2/4 | 925 | 481 | 0.94 | 933 | 7529 | 0.97 |
4 | 0.2/6 | 839 | 646 | 1.34 | 838 | 10391 | 2.30 |
1 | Elvira K S, Gielen F, Tsai S S H, et al. Materials and methods for droplet microfluidic device fabrication[J]. Lab on a Chip, 2022, 22(5): 859-875. |
2 | de Oliveira Bianchi J R, de la Torre L G, Costa A L R. Droplet-based microfluidics as a platform to design food-grade delivery systems based on the entrapped compound type[J]. Foods, 2023, 12(18): 3385. |
3 | Yeh S I, Fu C Y, Sung C Y, et al. Microfluidic fabrication of porous PLGA microspheres without pre-emulsification step[J]. Microfluidics and Nanofluidics, 2023, 27(7): 47. |
4 | Xu W, Li X H, Brugger J, et al. Study of the enhanced electricity output of a sliding droplet-based triboelectric nanogenerator for droplet sensor design[J]. Nano Energy, 2022, 98: 107166. |
5 | Cheong D Y, Lee W, Park I, et al. Amyloid formation in nanoliter droplets[J]. International Journal of Molecular Sciences, 2022, 23(10): 5480. |
6 | 吉笑盈, 郑园, 李晓鹏, 等. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
Ji X Y, Zheng Y, Li X P, et al. Controlled preparation of droplets, particles and capsules by microfluidics and their applications[J]. CIESC Journal, 2024, 75(4): 1455-1468. | |
7 | Orbay S, Sanyal A. Molecularly imprinted polymeric particles created using droplet-based microfluidics: preparation and applications[J]. Micromachines, 2023, 14(4): 763. |
8 | 黄心童, 耿宇昊, 刘恒源, 等. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
Huang X T, Geng Y H, Liu H Y, et al. Research progress on new functional nanoparticles prepared by microfluidic technology[J]. CIESC Journal, 2023, 74(1): 355-364. | |
9 | Amirifar L, Besanjideh M, Nasiri R, et al. Droplet-based microfluidics in biomedical applications[J]. Biofabrication, 2022, 14(2): 022001. |
10 | Li B X, Ma X, Cheng J H, et al. Droplets microfluidics platform—a tool for single cell research[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1121870. |
11 | Sumitomo S, Ueta M, Uddin M A, et al. Comparison of oil-in-water emulsion between ultrasonic irradiation and mechanical stirring[J]. Chemical Engineering & Technology, 2019, 42(2): 381-387. |
12 | Hoesli C A, Kiang R L J, Raghuram K, et al. Mammalian cell encapsulation in alginate beads using a simple stirred vessel[J]. Journal of Visualized Experiments, 2017(124): 55280. |
13 | Yanagishita T, Inoue T, Kondo T, et al. Preparation of monodisperse LiCoO2 hollow particles by membrane emulsification using anodic porous alumina[J]. Chemistry Letters, 2018, 47(4): 551-554. |
14 | Zanatta V, Rezzadori K, Penha F M, et al. Stability of oil-in-water emulsions produced by membrane emulsification with microporous ceramic membranes[J]. Journal of Food Engineering, 2017, 195: 73-84. |
15 | Ding Y, Howes P D, DeMello A J. Recent advances in droplet microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132-149. |
16 | Hu C X, Jin K, Ma H B. A universal model for continuous “one-to-two” high-efficient droplet generation in digital microfluidics[J]. Applied Physics Letters, 2023, 122(18): 181601. |
17 | Ofner A, Mattich I, Hagander M, et al. Controlled massive encapsulation via tandem step emulsification in glass[J]. Advanced Functional Materials, 2019, 29(4): 1806821. |
18 | Opalski A S, Makuch K, Lai Y K, et al. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions[J]. Lab on a Chip, 2019, 19(7): 1183-1192. |
19 | Vladisavljević G T, Ekanem E E, Zhang Z L, et al. Long-term stability of droplet production by microchannel (step) emulsification in microfluidic silicon chips with large number of terraced microchannels[J]. Chemical Engineering Journal, 2018, 333: 380-391. |
20 | Han T T, Zhang L, Xu H, et al. Factory-on-chip: modularised microfluidic reactors for continuous mass production of functional materials[J]. Chemical Engineering Journal, 2017, 326: 765-773. |
21 | Yadavali S, Jeong H H, Lee D, et al. Silicon and glass very large scale microfluidic droplet integration for terascale generation of polymer microparticles[J]. Nature Communications, 2018, 9(1): 1222. |
22 | Cui Y J, Li Y K, Wang K, et al. High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels[J]. Journal of Flow Chemistry, 2020, 10(1): 271-282. |
23 | Zhang J, Xu W H, Xu F Y, et al. Microfluidic droplet formation in co-flow devices fabricated by micro 3D printing[J]. Journal of Food Engineering, 2021, 290: 110212. |
24 | Jeong H H, Chen Z, Yadavali S, et al. Large-scale production of compound bubbles using parallelized microfluidics for efficient extraction of metal ions[J]. Lab on a Chip, 2019, 19(4): 665-673. |
25 | Ribeiro de Souza L, Al-Tabbaa A. High throughput production of microcapsules using microfluidics for self-healing of cementitious materials[J]. Lab on a Chip, 2021, 21(23): 4652-4659. |
26 | Kim J H, Ryu C H, Chon C H, et al. Three months extended-release microspheres prepared by multi-microchannel microfluidics in beagle dog models[J]. International Journal of Pharmaceutics, 2021, 608: 121039. |
27 | Deng C F, Yang S H, Xie R, et al. Flexible fractal integration of microfluidic modules for controllable mass production of monodisperse microdroplets[J]. Industrial & Engineering Chemistry Research, 2023, 62(32): 12690-12702. |
28 | 石盼, 颜肖潇, 王行政, 等. 一步法制备生物相容油核微胶囊及其可控释放[J]. 化工学报, 2021, 72(1): 619-627. |
Shi P, Yan X X, Wang X Z, et al. One-step fabrication of biocompatible oil-core microcapsules with controlled release[J]. CIESC Journal, 2021, 72(1): 619-627. | |
29 | 翟小威, 潘湄蝶, 石盼, 等. 一步法高通量可控制备生物相容水/水微囊及其响应释放[J]. 高等学校化学学报, 2022, 43(12): 335-344. |
Zhai X W, Pan M D, Shi P, et al. One-step high-throughput controlled preparation of biocompatible water/water microcapsules with triggered release[J]. Chemical Journal of Chinese Universities, 2022, 43(12): 335-344. | |
30 | 朱佐银, 彭湉, 周新丽. 高通量微流控阵列芯片设计及制备植物乳杆菌微胶囊的研究[J]. 食品与发酵工业, 2023, 49(3): 125-130. |
Zhu Z Y, Peng T, Zhou X L. High-throughput microfluidic array chip design and study on preparation of Lactobacillus plantarum microcapsules[J]. Food and Fermentation Industries, 2023, 49(3): 125-130. | |
31 | Nawar S, Stolaroff J K, Ye C W, et al. Parallelizable microfluidic dropmakers with multilayer geometry for the generation of double emulsions[J]. Lab on a Chip, 2020, 20(1): 147-154. |
32 | Senn S M, Poulikakos D. Tree network channels as fluid distributors constructing double-staircase polymer electrolyte fuel cells[J]. Journal of Applied Physics, 2004, 96(1): 842-852. |
33 | Wang Y, Zhou X Y, Yang Z H, et al. An integrated and multi-functional droplet-based microfluidic platform for digital DNA amplification[J]. Biosensors and Bioelectronics, 2024, 246: 115831. |
34 | Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles[J]. Lab on a Chip, 2008, 8(2): 287-293. |
35 | Nisisako T, Ando T, Hatsuzawa T. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces[J]. Lab on a Chip, 2012, 12(18): 3426-3435. |
36 | Anshori I, Sarwono F Z, Fa'iq M A, et al. From design to performance: 3-D printing-enabled optimization of low-cost droplet microfluidics[J]. IEEE Sensors Journal, 2024, 24(1): 63-70. |
37 | Utada A S, Fernandez-Nieves A, Gordillo J M, et al. Absolute instability of a liquid jet in a coflowing stream[J]. Physical Review Letters, 2008, 100(1): 014502. |
38 | Wang Z B, Chen Z Z, Wen Y F, et al. Highly efficient droplet generation device based on a three-dimensional fractal structure[J]. Chemical Engineering Science, 2023, 282: 119227. |
[1] | Lei ZUO, Junfeng WANG, Jian GAO, Daorui WANG. Electric field-regulating combustion behavior of biodiesel droplet [J]. CIESC Journal, 2024, 75(8): 2983-2990. |
[2] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
[3] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[4] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[5] | Banghan WU, Dingbiao LIN, Haifeng LU, Xiaolei GUO, Haifeng LIU. Pipe pressure drop and transfer bottle conveying characteristics in vertical pipe pneumatic logistics transmission system [J]. CIESC Journal, 2024, 75(7): 2465-2473. |
[6] | Zhihong HUANG, Li ZHOU, Shiyang CHAI, Xu JI. Integrating optimization of hydrogenation units in multi-period hydrogen network [J]. CIESC Journal, 2024, 75(5): 1951-1965. |
[7] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[8] | Mengqi LIU, Kai WANG, Guangsheng LUO. Fundamental research on microdispersion based on artificial intelligence [J]. CIESC Journal, 2024, 75(4): 1096-1104. |
[9] | Jin ZHANG, Zhibin GUO, Laiming LUO, Shanfu LU, Yan XIANG. Design and performance of 5 kW reforming methanol high temperature proton exchange membrane fuel cell system [J]. CIESC Journal, 2024, 75(4): 1697-1704. |
[10] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
[11] | Nailiang LI, Changsong LIU, Xueping DU, Yifan ZHANG, Dongtai HAN. Analysis of multi-scale fractal characteristics of severe slugging based on Hurst exponent [J]. CIESC Journal, 2024, 75(2): 484-492. |
[12] | Qun ZHENG, Peiqiang CHEN, Changfu WANG, Chunhua XIONG, Wanli XU, Man RUAN. Electrolyte flow characteristics of seawater activated battery [J]. CIESC Journal, 2024, 75(12): 4770-4779. |
[13] | Xiaojie JU, Mingwei HE, Youqiang XIA, Wei WANG, Liangyin CHU. Research progress on controllable fabrication of anisotropic microfibers by microfluidics [J]. CIESC Journal, 2024, 75(11): 3923-3934. |
[14] | Dewang ZHANG, Qiankun ZHAO, Xiaoni GUO, Chaoqun YAO, Guangwen CHEN. Flow and mass transfer characteristics of Newtonian/non-Newtonian liquid-liquid flow in a microreactor [J]. CIESC Journal, 2024, 75(11): 4162-4169. |
[15] | Hao CHEN, Wenqi ZHAO, Haoyu FENG, Taotao FU, Chunying ZHU, Youguang MA. Research progress on droplet sieving in microchannel [J]. CIESC Journal, 2024, 75(11): 3935-3950. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 217
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 189
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||