| [1] |
赵曦, 田艳红, 张学军, 等. 锂离子电池负极材料Li4Ti5O12/C的制备与表征[J]. 化工学报, 2015, 66(5): 1989-1995.
|
|
Zhao X, Tian Y H, Zhang X J, et al. Preparation and characterization of Li4Ti5O12/C anode material for lithium ion batteries[J]. CIESC Journal, 2015, 66(5): 1989-1995.
|
| [2] |
Liu L, Yin Y X, Li J Y, et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes[J]. Joule, 2017, 1(3): 563-575.
|
| [3] |
Song D Y, Wang S S, Liu R Z, et al. Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material[J]. Applied Surface Science, 2019, 478: 290-298.
|
| [4] |
Meng J K, Suo Y, Li J, et al. Nitrogen-doped graphene aerogels as anode materials for lithium-ion battery: assembly and electrochemical properties[J]. Materials Letters, 2015, 160: 392-396.
|
| [5] |
计天溢, 刘晓旭, 赵九蓬, 等. 三维交联石墨烯纳米纤维的合成及储锂性能[J]. 高等学校化学学报, 2020, 41(4): 821-828.
|
|
Ji T Y, Liu X X, Zhao J P, et al. Synthesis and lithium-storage characteristics of three-dimensional cross-linked graphene nanofibers[J]. Chemical Journal of Chinese Universities, 2020, 41(4): 821-828.
|
| [6] |
Noh H J, Lee M H, Kim B G, et al. 3D carbon-based porous anode with a pore-size gradient for high-performance lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2021,13: 55227.
|
| [7] |
Huang W, Yu Y K, Hou Z, et al. Dendrite-free lithium electrode enabled by graphene aerogels with gradient porosity[J]. Energy Storage Materials, 2020, 33: 329-335.
|
| [8] |
Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites[J]. Electrochimica Acta, 1999, 45(1/2): 31-50.
|
| [9] |
Hu X, Zeng G, Chen J X, et al. 3D graphene network encapsulating SnO2 hollow spheres as a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(9): 4535-4542.
|
| [10] |
Kreissl J J A, Petit J, Oppermann R, et al. Electrochemical lithiation/delithiation of ZnO in 3D-structured electrodes: elucidating the mechanism and the solid electrolyte interphase formation[J]. ACS Applied Materials & Interfaces, 2021, 13(30): 35625-35638.
|
| [11] |
Xiao C L, Zhang S C, Wang S B, et al. ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery[J]. Electrochimica Acta, 2016, 189: 245-251.
|
| [12] |
Li N, Jin S X, Liao Q Y, et al. ZnO anchored on vertically aligned graphene: binder-free anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 20590-20596.
|
| [13] |
Zhang S, Deng W T, Momen R, et al. Element substitution of a spinel LiMn2O4 cathode[J]. Journal of Materials Chemistry A, 2021, 9(38): 21532-21550.
|
| [14] |
Deng S Z, Li Z T. Nitrogen-doped graphene oxide coated ZnO nanohybrid for lithium-ion batteries anode[J]. Integrated Ferroelectrics, 2017, 182(1): 10-20.
|
| [15] |
Karahan B D, Gülcan M F. Chemo-mechanical processing of hot chamber die cast scrap to design ZnO-based composite anode for lithium-ion batteries[J]. Materials Chemistry and Physics, 2024, 317: 129138.
|
| [16] |
Bajorowicz B, Wilamowska-Zawłocka M, Lisowski W, et al. N-doped graphene quantum dot-decorated MOF-derived yolk-shell ZnO/NiO hybrids to boost lithium and sodium ion battery performance[J]. Applied Surface Science, 2024, 655: 159702.
|
| [17] |
Sun W, Li Z Y, Li D Z, et al. Pre-lithiation strategy to design a high-performance zinc oxide anode for lithium-ion batteries[J]. Nanoscale, 2024, 16(9): 4880-4889.
|
| [18] |
Ahmad M, Shi Y Y, Nisar A, et al. Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes[J]. Journal of Materials Chemistry, 2011, 21(21): 7723-7729.
|
| [19] |
Huang X H, Xia X H, Yuan Y F, et al. Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries[J]. Electrochimica Acta, 2011, 56(14): 4960-4965.
|
| [20] |
Chen M, Fan Y Q, Zhou H F, et al. ZnO@C coated cellulose-based separators control lithium deposition direction to stable lithium metal batteries[J]. Small, 2024, 20(11): 2306712.
|
| [21] |
Xiang S B, Fu Y, Yin C R, et al. Advances in research on the inhibitory effect of 3D current collector structures for lithium dendrites[J]. Inorganic Chemistry Frontiers, 2023, 10(23): 6767-6791.
|
| [22] |
Zhang Y G, Wei Y Q, Li H P, et al. Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries[J]. Materials Letters, 2016, 184: 235-238.
|
| [23] |
Xie Q S, Zhang X Q, Wu X B, et al. Yolk-shell ZnO-C microspheres with enhanced electrochemical performance as anode material for lithium ion batteries[J]. Electrochimica Acta, 2014, 125: 659-665.
|
| [24] |
Fang H M, Zhao L, Yue W B, et al. Facile and large-scale preparation of sandwich-structured graphene-metal oxide composites as anode materials for Li-ion batteries[J]. Electrochimica Acta, 2015, 186: 397-403.
|
| [25] |
Ye M H, Dong Z L, Hu C G, et al. Uniquely arranged graphene-on-graphene structure as a binder-free anode for high-performance lithium-ion batteries[J]. Small, 2014, 10(24): 5035-5041.
|