CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4081-4094.DOI: 10.11949/0438-1157.20241525
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Ning YANG1,2(
), Haonan LI1, Xiao LIN3(
), Stella GEORGIADOU2, Wen-Feng LIN2,4,5
Received:2024-12-30
Revised:2025-04-17
Online:2025-09-17
Published:2025-08-25
Contact:
Xiao LIN
杨宁1,2(
), 李皓男1, LIN Xiao3(
), GEORGIADOU Stella2, LIN Wen-Feng2,4,5
通讯作者:
LIN Xiao
作者简介:杨宁 (1989—),男,博士,副教授,1020219438@qq.com
基金资助:CLC Number:
Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis[J]. CIESC Journal, 2025, 76(8): 4081-4094.
杨宁, 李皓男, LIN Xiao, GEORGIADOU Stella, LIN Wen-Feng. 从塑料废弃物到能源催化剂:塑料衍生碳@CoMoO4复合材料在电解水析氢反应中的应用[J]. 化工学报, 2025, 76(8): 4081-4094.
Add to citation manager EndNote|Ris|BibTeX
Fig.9 Electrochemical measurements of the as-prepared samples for hydrogen evolution reaction in 1 mol/L KOH aqueous solution: (a) polarization curves; (b) overpotential; (c) EIS curves; (d) Tafel plots
| 催化剂 | 电解液 | η10/mV | Tafel斜率/(mV/dec) | 文献 |
|---|---|---|---|---|
| CMO x CNT | 1 mol/L KOH | 171 | 69.9 | [ |
| CoP@CoMoO4 HNTs | 1 mol/L KOH | 120 | 34 | [ |
| CoMoO4/N, S co-doped carbon | 1 mol/L KOH | 89 | 32 | [ |
| Co0.5Zn0.5MoO4 | 1 mol/L KOH | 204 | 162.7 | [ |
| N,S-NCO@CMO | 1 mol/L KOH | 100 | 64 | [ |
| CoMoO4@PNAC | 1 mol/L KOH | 162 | 130.66 | 本工作 |
Table 1 Partial studies on CoMoO4-based catalysts
| 催化剂 | 电解液 | η10/mV | Tafel斜率/(mV/dec) | 文献 |
|---|---|---|---|---|
| CMO x CNT | 1 mol/L KOH | 171 | 69.9 | [ |
| CoP@CoMoO4 HNTs | 1 mol/L KOH | 120 | 34 | [ |
| CoMoO4/N, S co-doped carbon | 1 mol/L KOH | 89 | 32 | [ |
| Co0.5Zn0.5MoO4 | 1 mol/L KOH | 204 | 162.7 | [ |
| N,S-NCO@CMO | 1 mol/L KOH | 100 | 64 | [ |
| CoMoO4@PNAC | 1 mol/L KOH | 162 | 130.66 | 本工作 |
| [1] | Truong H B, Tran N T, Do H H. Recent advancements and perspectives of hydrogen evolution reaction electrocatalysts based on molybdenum phosphides[J]. International Journal of Hydrogen Energy, 2024, 80: 696-711. |
| [2] | 张正, 宋凌珺. 电解水制氢技术: 进展、挑战与未来展望[J]. 工程科学学报, 2025, 47(2): 282-295. |
| Zhang Z, Song L J. Hydrogen production by water electrolysis: advances, challenges and future prospects[J]. Chinese Journal of Engineering, 2025, 47(2): 282-295. | |
| [3] | Zhao G Q, Rui K, Dou S X, et al. Heterostructures for electrochemical hydrogen evolution reaction: a review[J]. Advanced Functional Materials, 2018, 28(43): 1803291. |
| [4] | Strmcnik D, Lopes P P, Genorio B, et al. Design principles for hydrogen evolution reaction catalyst materials[J]. Nano Energy, 2016, 29: 29-36. |
| [5] | Gao G L, Zhao G Z, Zhu G, et al. Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction[J]. Chinese Chemical Letters, 2025, 36(1): 109557. |
| [6] | Chen J Y C, Miller J T, Gerken J B, et al. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion[J]. Energy & Environmental Science, 2014, 7(4): 1382-1386. |
| [7] | Upadhyay S, Ahmad Mir R, Kumar N, et al. Reusing waste plastic bottle to reduce MoO3 into carbon-supported MoO2 nanoparticles for efficient water electrolysis[J]. Surfaces and Interfaces, 2023, 42: 103297. |
| [8] | Jin Y S, Wang H T, Li J J, et al. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting[J]. Advanced Materials, 2016, 28(19): 3785-3790. |
| [9] | Zhang C, Liu Y, Wang J M, et al. A well-designed fencelike Co3O4@MoO3 derived from Co foam for enhanced electrocatalytic HER[J]. Applied Surface Science, 2022, 595: 153532. |
| [10] | Jiang M H, Hu Z C, Zou Y J, et al. NiSe-modified CoMoO4 nanosheets as bifunctional electrocatalysts for hydrogen and oxygen evolution reactions[J]. Journal of Alloys and Compounds, 2024, 978: 173495. |
| [11] | Dashtian K, Ganjali M R, Albo J, et al. CoMoO4 nano-architecture-based supercapacitors: tunable properties, performance optimization, and prospective applications[J]. Journal of Energy Storage, 2024, 102: 114063. |
| [12] | Li W X, Wang X W, Hu Y C, et al. Hydrothermal synthesized of CoMoO4 microspheres as excellent electrode material for supercapacitor[J]. Nanoscale Research Letters, 2018, 13(1): 120. |
| [13] | You N, Cao S, Huang M Q, et al. Constructing P-CoMoO4@NiCoP heterostructure nanoarrays on Ni foam as efficient bifunctional electrocatalysts for overall water splitting[J]. Nano Materials Science, 2023, 5(3): 278-286. |
| [14] | Ray S K, Bastakoti B P. Improved supercapacitor and oxygen evolution reaction performances of morphology-controlled cobalt molybdate[J]. International Journal of Hydrogen Energy, 2024, 51: 1109-1118. |
| [15] | Li T Z, Dong Y Y, Zhang J J, et al. Carbon dots-based composites electrocatalysts in hydrogen evolution reaction and oxygen evolution reaction: a mini review[J]. International Journal of Hydrogen Energy, 2024, 77: 359-372. |
| [16] | Keivanimehr F, Habibzadeh S, Baghban A, et al. Electrocatalytic hydrogen evolution on the noble metal-free MoS2/carbon nanotube heterostructure: a theoretical study[J]. Scientific Reports, 2021, 11(1): 3958. |
| [17] | Reddy S, Song L, Kang L X, et al. Preparation of Mo2C-carbon nanomaterials for hydrogen evolution reaction[J]. Carbon Letters, 2019, 29(3): 225-232. |
| [18] | 杨妮娜, 左剑恶, 张艳艳, 等. 塑料老化过程及其环境危害研究进展[J]. 环境科学, 2025, 46(3): 1850-1860. |
| Yang N N, Zuo J E, Zhang Y Y, et al. Research progress on plastic aging processes and their environmental hazards[J]. Environmental Science, 2025, 46(3): 1850-1860. | |
| [19] | Lian Y M, Ni M, Huang Z H, et al. Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors[J]. Chemical Engineering Journal, 2019, 366: 313-320. |
| [20] | Yu W L, Chen Z, Yu S T, et al. Highly dispersed Pt catalyst supported on nanoporous carbon derived from waste PET bottles for reductive alkylation[J]. RSC Advances, 2019, 9(53): 31092-31101. |
| [21] | Ahmad Mir R, Kaur G, Pandey O P. Facile process to utilize carbonaceous waste as a carbon source for the synthesis of low cost electrocatalyst for hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(44): 23908-23919. |
| [22] | Yang Y X, An X Q, Wang D X, et al. Selenium-inducing activates molybdenum phosphide/nitrogen-doped porous carbon nanoparticles for boosting hydrogen generation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 666: 131307. |
| [23] | Sui D, Luo R S, Xie S M, et al. Atomic ruthenium doping in collaboration with oxygen vacancy engineering boosts the hydrogen evolution reaction by optimizing H absorption[J]. Chemical Engineering Journal, 2024, 480: 148007. |
| [24] | Pi C R, Huang C, Yang Y X, et al. In situ formation of N-doped carbon-coated porous MoP nanowires: a highly efficient electrocatalyst for hydrogen evolution reaction in a wide pH range[J]. Applied Catalysis B: Environmental, 2020, 263: 118358. |
| [25] | Wu A P, Xie Y, Ma H, et al. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting[J]. Nano Energy, 2018, 44: 353-363. |
| [26] | Homayounfard A M, Maleki M, Ghanbari H, et al. Growth of few-layer flower-like MoS2 on heteroatom-doped activated carbon as a hydrogen evolution reaction electrode[J]. International Journal of Hydrogen Energy, 2024, 55: 1360-1370. |
| [27] | Tao Y H, Wang X G, Yue S N, et al. Molybdenum carbide nanoparticles supported on nitrogen-doped carbon as efficient electrocatalysts for hydrogen evolution reaction[J]. Journal of Electroanalytical Chemistry, 2019, 842: 89-97. |
| [28] | He X, Zeng K, Xie Y P, et al. The effects of temperature and molten salt on solar pyrolysis of lignite[J]. Energy, 2019, 181: 407-416. |
| [29] | Nti F, Anang D A, Han J I. Facilely synthesized NiMoO4/CoMoO4 nanorods as electrode material for high performance supercapacitor[J]. Journal of Alloys and Compounds, 2018, 742: 342-350. |
| [30] | Lv J L, Yang M, Suzuki K, et al. Synthesis of CoMoO4@RGO nanocomposites as high-performance supercapacitor electrodes[J]. Microporous and Mesoporous Materials, 2017, 242: 264-270. |
| [31] | Fioravanti F, Martínez S, Delgado S, et al. Effect of MoS2 in doped-reduced graphene oxide composites. Enhanced electrocatalysis for HER[J]. Electrochimica Acta, 2023, 441: 141781. |
| [32] | Zhang B, Liu G J, Jin B, et al. CoMoO4/rGO hybrid structure embellished with Cu nanoparticles: an electrocatalyst rich in oxygen vacancies towards enhanced oxygen evolution reaction[J]. Materials Letters, 2021, 293: 129741. |
| [33] | Yan D G, Feng D X, Khan D S U, et al. Polyoxometalate and resin-derived P-doped Mo2C@N-doped carbon as a highly efficient hydrogen-evolution reaction catalyst at all pH values[J]. Chemistry - An Asian Journal, 2018, 13(2): 158-163. |
| [34] | Zuo P, Liu Y F, Liu X L, et al. N, P-codoped molybdenum carbide nanoparticles loaded into N, P-codoped graphene for the enhanced electrocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022, 47(69): 29730-29740. |
| [35] | Chen C, Xin X, Cheng T, et al. The synergistic benefits of hydrate CoMoO4 and carbon nanotubes culminate in the creation of highly efficient electrocatalysts for hydrogen evolution[J]. Alexandria Engineering Journal, 2024, 87: 93-106. |
| [36] | Gao Z F, Zeng Z F, Xu X W, et al. Hollow nanotube arrays of CoP@CoMoO4 as advanced electrocatalyst for overall water splitting[J]. International Journal of Hydrogen Energy, 2024, 49: 260-271. |
| [37] | Zhang Z F, Ran J X, Fan E Z, et al. Mesoporous CoMoO4 hollow tubes derived from POMOFs as efficient electrocatalyst for overall water splitting[J]. Journal of Alloys and Compounds, 2023, 968: 172169. |
| [38] | Li J S, Zhao C X, Yang Y X, et al. Synthesis of monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons for environment-friendly supercapacitors[J]. Journal of Alloys and Compounds, 2019, 810: 151841. |
| [39] | Meng L X, Liu W W, Lu Y, et al. Lamellar-stacked cobalt-based nanopiles integrated with nitrogen/sulfur Co-doped graphene as a bifunctional electrocatalyst for ultralong-term zinc-air batteries[J]. Journal of Energy Chemistry, 2023, 81: 633-641. |
| [40] | Asen P. Cobalt molybdenum oxide/sponge-like nitrogen and sulfur Co-doped carbon composite as a bifunctional electrocatalyst for overall water splitting in alkaline media[J]. International Journal of Hydrogen Energy, 2025, 115: 1-9. |
| [41] | Chamani S, Sadeghi E, Unal U, et al. Tuning electrochemical hydrogen-evolution activity of CoMoO4 through Zn incorporation[J]. Catalysts, 2023, 13(5): 798. |
| [42] | Wang J, Xuan H C, Meng L X, et al. N, S Co-doped NiCo2O4@CoMoO4/NF hierarchical heterostructure as an efficient bifunctional electrocatalyst for overall water splitting[J]. International Journal of Hydrogen Energy, 2023, 48(22): 8144-8155. |
| [43] | Gao X C, Lu K X, Chen J J, et al. NiCoP–CoP heterostructural nanowires grown on hierarchical Ni foam as a novel electrocatalyst for efficient hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23205-23213. |
| [44] | Yang X, Qiu R, Lan M J, et al. Direct synthesis of binder-free Ni-Fe-S on Ni foam as superior electrocatalysts for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2022, 47(86): 36556-36565. |
| [45] | Zhang L, Hu Z H, Huang J T, et al. Experimental and DFT studies of flower-like Ni-doped Mo2C on carbon fiber paper: a highly efficient and robust HER electrocatalyst modulated by Ni(NO3)2 concentration[J]. Journal of Advanced Ceramics, 2022, 11(8): 1294-1306. |
| [46] | Liu H C, Tan Z X, Niu Y X, et al. Ir-decorated MoS2 monolayer as a promising candidate to detect dissolved gas in transformer oil: a DFT study[J]. Chemical Physics Letters, 2023, 818: 140410. |
| [1] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [2] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [3] | Yitong ZHOU, Mingxi ZHOU, Ruochen LIU, Shuang YE, Weiguang HUANG. Technical and economic analysis on hydrogen based direct reduction steelmaking co-driven by photovoltaic and power grid [J]. CIESC Journal, 2025, 76(8): 4318-4330. |
| [4] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [5] | Jiaxin LUO, Yan YUAN. Research progress of piezoelectric materials in solid-state metal secondary batteries [J]. CIESC Journal, 2025, 76(8): 3822-3833. |
| [6] | Tianhao WU, Tingwei YE, Yan LIN, Zhen HUANG. In-situ hydrogen supplementation of biomass chemical looping gasification to produce syngas with controllable H2/CO [J]. CIESC Journal, 2025, 76(7): 3498-3508. |
| [7] | Jiaxiang CHEN, Wei ZHOU, Xuewei ZHANG, Lijie WANG, Yuming HUANG, Yang YU, Miaoting SUN, Wanjing LI, Junshu YUAN, Hongbo ZHANG, Xiaoxiao MENG, Jihui GAO, Guangbo ZHAO. Simulation study on the hydrogen production performance of a two-dimensional PEMWE model under pulsed voltage [J]. CIESC Journal, 2025, 76(7): 3521-3530. |
| [8] | Xinran LI, Longjiao CHANG, Shaohua LUO, Yongbing LI, Ruifen YANG, Zenglei HOU, Jie ZOU. Modification mechanism of Ho doped NCM622 induced local electron remodeling to inhibit cationic mixing [J]. CIESC Journal, 2025, 76(7): 3733-3741. |
| [9] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [10] | Guoqing SUN, Haibo LI, Zhiyang DING, Wenhui GUO, Hao XU, Yanxia ZHAO. Research progress of silicon based anode materials [J]. CIESC Journal, 2025, 76(7): 3197-3211. |
| [11] | Peiqiang CHEN, Qun ZHENG, Yuting JIANG, Chunhua XIONG, Jinmao CHEN, Xudong WANG, Long HUANG, Man RUAN, Wanli XU. Effects of electrolyte flow rate and current density on the output performance of seawater-activated batteries [J]. CIESC Journal, 2025, 76(7): 3235-3245. |
| [12] | Lixiao WU, Xixi YAN, Suna ZHANG, Yiming XU, Jiaying QIAN, Yongmin QIAO, Lijun WANG. The preparation of phosphorus-doped microcrystalline graphite and its electrochemical performance as an anode material for lithium-ion batteries [J]. CIESC Journal, 2025, 76(7): 3615-3625. |
| [13] | Xuerui LU, Guoyan ZHOU, Qi FANG, Mengzheng YU, Xiucheng ZHANG, Shandong TU. Numerical study on the carbon deposition effect in external reformer of solid oxide fuel cells [J]. CIESC Journal, 2025, 76(7): 3295-3304. |
| [14] | Ziheng WANG, Wenhuai LI, Wei ZHOU. Application of patterned electrodes in solid oxide fuel cell [J]. CIESC Journal, 2025, 76(7): 3153-3171. |
| [15] | Chang ZHANG, Qiang XIE, Yutong SHA, Bingjie WANG, Dingcheng LIANG, Jinchang LIU. Preparation of bamboo char with low ash and silicon content and electrochemical properties of its derived hard carbon [J]. CIESC Journal, 2025, 76(6): 3073-3083. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||