CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4071-4080.DOI: 10.11949/0438-1157.20250125
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Mei ZHOU1(
), Haojie ZENG1, Huoyan JIANG1, Ting PU1, Xingxing ZENG1, Baoyu LIU1,2(
)
Received:2025-02-11
Revised:2025-03-12
Online:2025-09-17
Published:2025-08-25
Contact:
Baoyu LIU
周媚1(
), 曾浩桀1, 蒋火炎1, 蒲婷1, 曾星星1, 刘宝玉1,2(
)
通讯作者:
刘宝玉
作者简介:周媚(1999—),女,硕士研究生,zhoumei0404@126.com
基金资助:CLC Number:
Mei ZHOU, Haojie ZENG, Huoyan JIANG, Ting PU, Xingxing ZENG, Baoyu LIU. Meosporous MTW zeolites modified by secondary crystallization and their catalytic properties in alkylation reaction of benzene and cyclohexene[J]. CIESC Journal, 2025, 76(8): 4071-4080.
周媚, 曾浩桀, 蒋火炎, 蒲婷, 曾星星, 刘宝玉. 二次晶化法改性合成MTW分子筛及其在苯和环己烯烷基化反应中的催化性能[J]. 化工学报, 2025, 76(8): 4071-4080.
Add to citation manager EndNote|Ris|BibTeX
| 催化剂 | 元素含量(质量)/ % | Si/Al | |
|---|---|---|---|
| Si | Al | ||
| MTW-P | 45.44 | 0.76 | 60 |
| MTW-I | 44.76 | 1.76 | 25 |
| MTW-Ⅱ | 44.98 | 1.72 | 26 |
| MTW-Ⅲ | 44.81 | 1.75 | 26 |
Table 1 The elemental content of MTW zeolite
| 催化剂 | 元素含量(质量)/ % | Si/Al | |
|---|---|---|---|
| Si | Al | ||
| MTW-P | 45.44 | 0.76 | 60 |
| MTW-I | 44.76 | 1.76 | 25 |
| MTW-Ⅱ | 44.98 | 1.72 | 26 |
| MTW-Ⅲ | 44.81 | 1.75 | 26 |
| 催化剂 | SBET/(m2/g) | Sext/(m2/g) | Smicro/(m2/g) | Vtol/(cm3/g) | Vmicro/(cm3/g) | Vmeso/(cm3/g) | Sext/SBET | Vmeso/Vtol |
|---|---|---|---|---|---|---|---|---|
| MTW-P | 367 | 56 | 311 | 0.191 | 0.123 | 0.068 | 0.153 | 0.356 |
| MTW-I | 389 | 97 | 292 | 0.248 | 0.119 | 0.129 | 0.249 | 0.520 |
| MTW-Ⅱ | 434 | 106 | 328 | 0.273 | 0.133 | 0.140 | 0.244 | 0.513 |
| MTW-Ⅲ | 372 | 92 | 280 | 0.242 | 0.113 | 0.129 | 0.247 | 0.533 |
Table 2 The pore structure parameters of MTW zeolite
| 催化剂 | SBET/(m2/g) | Sext/(m2/g) | Smicro/(m2/g) | Vtol/(cm3/g) | Vmicro/(cm3/g) | Vmeso/(cm3/g) | Sext/SBET | Vmeso/Vtol |
|---|---|---|---|---|---|---|---|---|
| MTW-P | 367 | 56 | 311 | 0.191 | 0.123 | 0.068 | 0.153 | 0.356 |
| MTW-I | 389 | 97 | 292 | 0.248 | 0.119 | 0.129 | 0.249 | 0.520 |
| MTW-Ⅱ | 434 | 106 | 328 | 0.273 | 0.133 | 0.140 | 0.244 | 0.513 |
| MTW-Ⅲ | 372 | 92 | 280 | 0.242 | 0.113 | 0.129 | 0.247 | 0.533 |
| 催化剂 | 总Brønsted酸量①/(mmol/g) | 外表面Brønsted酸量②/(mmol/g) |
|---|---|---|
| MTW-P | 0.0154 | 0.0079 |
| MTW-Ⅰ | 0.0409 | 0.0208 |
| MTW-Ⅱ | 0.0741 | 0.0219 |
| MTW-Ⅲ | 0.0868 | 0.0324 |
Table 3 The acidity of MTW zeolite
| 催化剂 | 总Brønsted酸量①/(mmol/g) | 外表面Brønsted酸量②/(mmol/g) |
|---|---|---|
| MTW-P | 0.0154 | 0.0079 |
| MTW-Ⅰ | 0.0409 | 0.0208 |
| MTW-Ⅱ | 0.0741 | 0.0219 |
| MTW-Ⅲ | 0.0868 | 0.0324 |
| 催化剂 | 样品质量/mg | 软焦炭①/mg | 硬焦炭②/mg | 焦炭沉积速率③/(mg/h) |
|---|---|---|---|---|
| MTW-P | 6.19 | 0.116 | 0.273 | 0.091 |
| MTW-Ⅱ | 5.83 | 0.233 | 0.164 | 0.0082 |
Table 4 The coke deposition of different MTW zeolites
| 催化剂 | 样品质量/mg | 软焦炭①/mg | 硬焦炭②/mg | 焦炭沉积速率③/(mg/h) |
|---|---|---|---|---|
| MTW-P | 6.19 | 0.116 | 0.273 | 0.091 |
| MTW-Ⅱ | 5.83 | 0.233 | 0.164 | 0.0082 |
| [1] | 李强, 姜东全, 于青春, 等. 一种烷基环己基苯酚类液晶中间体化合物的制备新方法: 103553878B[P]. 2015-08-19. |
| Li Q, Jiang D Q, Yu Q C, et al. A new method for preparing alkylcyclohexylphenol liquid crystal intermediate compounds: 103553878B[P]. 2015-08-19. | |
| [2] | 陈新华, 李珊珊, 吴成胜, 等. 一种液晶化合物及其应用:112646589B[P]. 2023-03-31. |
| Chen X H, Li S S, Wu C S, et al. A liquid crystal compound and its applications:112646589B[P]. 2023-03-31. | |
| [3] | 袁骞,涂友兰,雷孟龙,等. 反式环己基(三)联苯类液晶化合物微波介电性能分析[J]. 液晶与显示, 2024, 39(9): 1145-1154. |
| Yuan Q, Tu Y L, Lei M L, et al. Analysis for the dielectric properties of trans-cyclohexyl (tri) biphenyl liquid crystal compounds in microwave frequency bands[J]. Chinese Journal of Liquid Crystals and Displays, 2024, 39(9): 1145-1154. | |
| [4] | Chen H G, Liu Y R, Chen M X, et al. Research of liquid-crystal materials for a high-performance FFS-TFT display[J]. Molecules, 2023, 28(2): 754. |
| [5] | Gu Q, Wang M, Liu Y, et al. Electrolyte additives for improving the high-temperature storage performance of Li-ion battery NCM523∥Graphite with overcharge protection[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4759-4766. |
| [6] | Yang Y F, Zhang Y D. An alternative route for the preparation of phenol: decomposition of cyclohexylbenzene-1-hydroperoxide[J]. International Journal of Chemical Kinetics, 2022, 54(2): 71-80. |
| [7] | Wang L L, Cheng X M, Dong M H, et al. Robust carbon-carbon cleavage in lignin to produce phenol and cyclohexanone[J]. Chemical Research in Chinese Universities, 2024, 40(1): 29-35. |
| [8] | Lee M H, Jung J, Han Y K. Understanding dimerization process of cyclohexyl benzene as an overcharge protection agent in lithium ion battery[J]. Bulletin of the Korean Chemical Society, 2018, 39(10): 1227-1230. |
| [9] | Xu M Q, Xing L D, Li W S, et al. Application of cyclohexyl benzene as electrolyte additive for overcharge protection of lithium ion battery[J]. Journal of Power Sources, 2008, 184(2): 427-431. |
| [10] | Zhang Y J, Yang Y S, Hou Q D, et al. Metal-acid bifunctional catalysts toward tandem reaction: one-step hydroalkylation of benzene to cyclohexylbenzene[J]. ACS Applied Materials & Interfaces, 2022, 14(28): 31998-32008. |
| [11] | Chen W H, Zhao S, Sim L B, et al. Selective benzene hydroalkylation: Ni/Ni PS/HY catalysts for enhanced cyclohexylbenzene formation[J]. Fuel, 2024, 371: 131879. |
| [12] | Zhang M, Fan G L, Li F. Significant promotional effect of Nb doping in bifunctional Pd/WO x nanocatalysts on one-step benzene hydroalkylation[J]. ChemCatChem, 2024, 16(18): e202400387. |
| [13] | Li J J, Liu C, Jia Z L, et al. Metal size effects over metal/zeolite bifunctional catalysts in the selective hydroalkylation of benzene[J]. Frontiers of Chemical Science and Engineering, 2024, 18(4): 45. |
| [14] | Kishore Kumar S A, John M, Pai S M, et al. Selective hydroalkylation of benzene over palladium supported Y-zeolite: effect of metal acid balance[J]. Molecular Catalysis, 2017, 442: 27-38. |
| [15] | Zhao S L, Wang K Z, Yang B B, et al. Selective hydrogenation of biphenyl to cyclohexylbenzene over Cu based catalysts[J]. Chemical Engineering Journal, 2024, 498: 155621. |
| [16] | Olivas A, Gaxiola E, Cruz-Reyes J, et al. Transition-metal influence (Fe, Co, Ni, Cu) on the MoWS catalyst for biphenyl hydrogenation[J]. Fuel Processing Technology, 2020, 204: 106410. |
| [17] | Liu Y, Liu Q Y, Sun K H, et al. Identification of the encapsulation effect of heteropolyacid in the Si–Al framework toward benzene alkylation[J]. ACS Catalysis, 2022, 12(8): 4765-4776. |
| [18] | Yang Y F, You Y, Wu J Y, et al. Phosphotungstic acid encapsulated in USY zeolite as catalysts for the synthesis of cyclohexylbenzene[J]. Journal of the Iranian Chemical Society, 2021, 18(3): 573-580. |
| [19] | Huang Y Q, Wang M N, Huang Y, et al. Mesoporous Beta zeolites with controlled distribution of Brønsted acid sites for alkylation of benzene with cyclohexene[J]. Results in Engineering, 2023, 19: 101377. |
| [20] | Meng F F, Ding Y S, Meng W, et al. Modification of molecular sieves USY and their application in the alkylation reaction of benzene with cyclohexene[J]. ChemistrySelect, 2020, 5(29): 8935-8941. |
| [21] | Meng F F, Dong L H, Meng W, et al. High efficiency catalyst of modified Y molecular sieve by rare earth La3+ catalyzed the synthesis of cyclohexylbenzene from benzene and cyclohexene[J]. Catalysis Letters, 2022, 152(3): 745-754. |
| [22] | 唐伟建, 王钰佳, 孙娜, 等. 基于不同路线合成环己基苯的催化剂研究进展[J]. 石油化工高等学校学报, 2024, 37(3): 17-24. |
| Tang W J, Wang Y J, Sun N, et al. Research progress of catalysts for cyclohexylbenzene synthesis based on different routes[J]. Journal of Petrochemical Universities, 2024, 37(3): 17-24. | |
| [23] | 王高伟, 魏一伦, 方华, 等. 液相烷基化制环己基苯的方法: 106518600B[P]. 2020-02-07. |
| Wang G W, Wei Y L, Fang H, et al. Method for liquid phase alkylation to produce cyclohexylbenzene: 106518600B[P]. 2020-02-07. | |
| [24] | 孟凡飞. 改性分子筛催化苯与环己烯合成环己基苯的研究[D]. 吉林: 吉林化工学院, 2021. |
| Meng F F. Study on catalytic synthesis of cyclohexylbenzene from benzene and cyclohexene by modified molecular sieves[D]. Jilin: Jilin Institute of Chemical Technology, 2021. | |
| [25] | Lai W F, Elks J T, Kay R E. Synthesis and use of ZSM-12: US20110034749[P]. 2011-02-10. |
| [26] | Shen Y G, Qiao L, Zhang Z L, et al. Synthesis, structure, and acidity regulation of ZSM-12 zeolite in alkane isomerization[J]. Fuel, 2025, 380: 133221. |
| [27] | Gopal S, Smirniotis P G. Factors affecting isomer yield for n-heptane hydroisomerization over as-synthesized and dealuminated zeolite catalysts loaded with platinum[J]. Journal of Catalysis, 2004, 225(2): 278-287. |
| [28] | Jae J, Tompsett G A, Foster A J, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. Journal of Catalysis, 2011, 279(2): 257-268. |
| [29] | Veselý O, Pang H, Vornholt S M, et al. Hierarchical MTW zeolites in tetrahydropyranylation of alcohols: Comparison of bottom-up and top-down methods[J]. Catalysis Today, 2019, 324: 123-134. |
| [30] | Góra-Marek K, Tarach K, Choi M. 2,6-Di-tert-butylpyridine sorption approach to quantify the external acidity in hierarchical zeolites[J]. The Journal of Physical Chemistry C, 2014, 118(23): 12266-12274. |
| [31] | Corma A, Fornés V, Forni L, et al. 2,6-Di-tert-butyl-pyridine as a probe molecule to measure external acidity of zeolites[J]. Journal of Catalysis, 1998, 179(2): 451-458. |
| [32] | Kim K, Ryoo R, Jang H D, et al. Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences[J]. Journal of Catalysis, 2012, 288: 115-123. |
| [33] | Onfroy T, Clet G, Houalla M. Quantitative IR characterization of the acidity of various oxide catalysts[J]. Microporous and Mesoporous Materials, 2005, 82(1/2): 99-104. |
| [34] | da Silva L S, Araki C A, Marcucci S M P, et al. Desilication of ZSM-5 and ZSM-12 zeolites with different crystal sizes: effect on acidity and mesoporous initiation[J]. Materials Research, 2019, 22(2): e20180872. |
| [35] | Abelló S, Bonilla A, Pérez-Ramírez J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Applied Catalysis A: General, 2009, 364(1/2): 191-198. |
| [1] | Xinyi CHAO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Controlled preparation and performance regulation of catalysts for one-step synthesis of methyl propionate from methanol and methyl acetate [J]. CIESC Journal, 2025, 76(8): 4030-4041. |
| [2] | Min YANG, Xinwei DUAN, Junhong WU, Jie MI, Jiancheng WANG, Mengmeng WU. COS catalyzed hydrolysis performance and deactivation mechanism of Sm2O3/γ-Al2O3 catalysts [J]. CIESC Journal, 2025, 76(8): 4061-4070. |
| [3] | Shiying ZHAO, Zhishuai ZUO, Mengying HE, Hualiang AN, Xinqiang ZHAO, Yanji WANG. Preparation of Co-Pt/HAP catalyst and its catalytic performance for 1,2-propanediol amination [J]. CIESC Journal, 2025, 76(7): 3305-3315. |
| [4] | Qinwen LIU, Hengbing YE, Yiwei ZHANG, Fahua ZHU, Wenqi ZHONG. Study on pressurized oxy-fuel co-combustion characteristics of coal and poultry litter [J]. CIESC Journal, 2025, 76(7): 3487-3497. |
| [5] | Qiuying LI, Yihuai HUA, Hao CHENG, Hanwei ZHANG, Wenrui LIU, Haochuan BAI, Kai WANG, Limin QIU. Design of efficient hydrogen liquefaction process integrated with ORC system [J]. CIESC Journal, 2025, 76(7): 3651-3658. |
| [6] | Yinxiang TANG, Feng ZHU, Yingying FAN, Yuxin LONG, Yong DAI, Chunling DENG, Xiaofeng HUANG. Effect of preparation conditions on low-temperature co-removal of COS and CS2 from modified calcium carbide slag [J]. CIESC Journal, 2025, 76(7): 3639-3650. |
| [7] | Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites [J]. CIESC Journal, 2025, 76(6): 2983-2994. |
| [8] | Haiyan JI, Jiayin LIU, Haijun WU, Jinglin HE, Ziheng JIN, Dianhang WEI, Xia JIANG. Research progress on the application of low-temperature plasma in biomass gasification to produce hydrogen [J]. CIESC Journal, 2025, 76(6): 2419-2433. |
| [9] | Shenghua YANG, Yangjie SUN, Xiaojun XUE, Jie MI, Jiancheng WANG, Yu FENG. Research progress on gas pollutants removal by defective metal oxides [J]. CIESC Journal, 2025, 76(6): 2469-2482. |
| [10] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [11] | Jing ZHANG, Yue YUAN, Yanmei LIU, Zhiwen WANG, Tao CHEN. Advance on the preparation of itaconic acid by biological method [J]. CIESC Journal, 2025, 76(3): 909-921. |
| [12] | Chuangde ZHANG, Li CHEN. Pore-scale study of effects of preferential path on multiphase reactive transport process in porous media [J]. CIESC Journal, 2025, 76(1): 161-172. |
| [13] | Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process [J]. CIESC Journal, 2024, 75(S1): 25-39. |
| [14] | Jiaying ZHANG, Cong WANG, Yajun WANG. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline [J]. CIESC Journal, 2024, 75(9): 3163-3175. |
| [15] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||