CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4786-4799.DOI: 10.11949/0438-1157.20250180
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jiaqing ZOU1(
), Zhaoyu ZHANG1, Jianguo ZHANG2, Boyu ZHANG2, Dingsheng LIU1(
), Qing MAO1(
), Ting WANG3, Jianjun LI3
Received:2025-02-25
Revised:2025-03-22
Online:2025-10-23
Published:2025-09-25
Contact:
Dingsheng LIU, Qing MAO
邹家庆1(
), 张肇钰1, 张建国2, 张博宇2, 刘定胜1(
), 毛庆1(
), 王挺3, 李建军3
通讯作者:
刘定胜,毛庆
作者简介:邹家庆(1999—),男,硕士研究生,1443608605@qq.com
CLC Number:
Jiaqing ZOU, Zhaoyu ZHANG, Jianguo ZHANG, Boyu ZHANG, Dingsheng LIU, Qing MAO, Ting WANG, Jianjun LI. Generation and evolution of bubbles in channels of bipolar plates of alkaline water electrolyzers for producing hydrogen[J]. CIESC Journal, 2025, 76(9): 4786-4799.
邹家庆, 张肇钰, 张建国, 张博宇, 刘定胜, 毛庆, 王挺, 李建军. 碱水制氢电解槽极板通道中气泡的生成及演化性质[J]. 化工学报, 2025, 76(9): 4786-4799.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 |
|---|---|
| 工作温度/K | 298 |
| 工作压力/Pa | 101325 |
| KOH溶液密度[ | 1216.11 |
| O2密度/(kg/m3) | 1.29 |
| 5 mol/L KOH动力黏度[ | 1.6549×10-3 |
| O2动力黏度/(kg/(m·s)) | 1.919×10-5 |
| 表面张力[ | 0.0871 |
| KOH入口流量/(ml/min) | 15 |
| 出口表压/Pa | 0 |
| 接触角[ | 150 |
Table 1 Physical parameters and operation conditions (current density of 0.5 A/cm2)
| 参数 | 数值 |
|---|---|
| 工作温度/K | 298 |
| 工作压力/Pa | 101325 |
| KOH溶液密度[ | 1216.11 |
| O2密度/(kg/m3) | 1.29 |
| 5 mol/L KOH动力黏度[ | 1.6549×10-3 |
| O2动力黏度/(kg/(m·s)) | 1.919×10-5 |
| 表面张力[ | 0.0871 |
| KOH入口流量/(ml/min) | 15 |
| 出口表压/Pa | 0 |
| 接触角[ | 150 |
| 网格尺寸/mm | 网格总数/个 | B4气泡y方向尺寸/mm | B5气泡y方向尺寸/mm |
|---|---|---|---|
| 0.030 | 528160 | 0.475 | 0.474 |
| 0.025 | 741280 | 0.480 | 0.488 |
| 0.020 | 2000000 | 0.483 | 0.482 |
Table 2 Variation of bubble size with mesh size at B4 and B5 at 0.7 ms
| 网格尺寸/mm | 网格总数/个 | B4气泡y方向尺寸/mm | B5气泡y方向尺寸/mm |
|---|---|---|---|
| 0.030 | 528160 | 0.475 | 0.474 |
| 0.025 | 741280 | 0.480 | 0.488 |
| 0.020 | 2000000 | 0.483 | 0.482 |
| [1] | Shimada H, Yamaguchi T, Kishimoto H, et al. Nanocomposite electrodes for high current density over 3 A·cm-2 in solid oxide electrolysis cells[J]. Nature Communications, 2019, 10(1): 5432. |
| [2] | Hauch A, Küngas R, Blennow P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118. |
| [3] | Flamm B, Peter C, Büchi F N, et al. Electrolyzer modeling and real-time control for optimized production of hydrogen gas[J]. Applied Energy, 2021, 281: 116031. |
| [4] | Qu W J, Zhang J, Jiang R H, et al. An energy storage approach for storing surplus power into hydrogen in a cogeneration system[J]. Energy Conversion and Management, 2022, 268: 116032. |
| [5] | Shiva Kumar S, Lim H. An overview of water electrolysis technologies for green hydrogen production[J]. Energy Reports, 2022, 8: 13793-13813. |
| [6] | Okolie J A, Patra B R, Mukherjee A, et al. Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy[J]. International Journal of Hydrogen Energy, 2021, 46(13): 8885-8905. |
| [7] | Naqvi S A H, Taner T, Ozkaymak M, et al. Hydrogen production through alkaline electrolyzers: a techno-economic and enviro-economic analysis[J]. Chemical Engineering & Technology, 2023, 46(3): 474-481. |
| [8] | David M, Ocampo-Martínez C, Sánchez-Peña R. Advances in alkaline water electrolyzers: a review[J]. Journal of Energy Storage, 2019, 23: 392-403. |
| [9] | Koumi Ngoh S, Njomo D. An overview of hydrogen gas production from solar energy[J]. Renewable and Sustainable Energy Reviews, 2012, 16(9): 6782-6792. |
| [10] | Dincer I, Acar C. Review and evaluation of hydrogen production methods for better sustainability[J]. International Journal of Hydrogen Energy, 2015, 40(34): 11094-11111. |
| [11] | Hreiz R, Abdelouahed L, Fünfschilling D, et al. Electrogenerated bubbles induced convection in narrow vertical cells: PIV measurements and Euler-Lagrange CFD simulation[J]. Chemical Engineering Science, 2015, 134: 138-152. |
| [12] | Majasan J O, Cho J I S, Dedigama I, et al. Two-phase flow behaviour and performance of polymer electrolyte membrane electrolysers: electrochemical and optical characterisation[J]. International Journal of Hydrogen Energy, 2018, 43(33): 15659-15672. |
| [13] | Boissonneau P, Byrne P. An experimental investigation of bubble-induced free convection in a small electrochemical cell[J]. Journal of Applied Electrochemistry, 2000, 30(7): 767-775. |
| [14] | Abdelouahed L, Valentin G, Poncin S, et al. Current density distribution and gas volume fraction in the gap of lantern blade electrodes[J]. Chemical Engineering Research and Design, 2014, 92(3): 559-570. |
| [15] | El-Askary W A, Sakr I M, Ibrahim K A, et al. Hydrodynamics characteristics of hydrogen evolution process through electrolysis: numerical and experimental studies[J]. Energy, 2015, 90: 722-737. |
| [16] | Aldas K. Application of a two-phase flow model for hydrogen evolution in an electrochemical cell[J]. Applied Mathematics and Computation, 2004, 154(2): 507-519. |
| [17] | Abdelouahed L, Hreiz R, Poncin S, et al. Hydrodynamics of gas bubbles in the gap of lantern blade electrodes without forced flow of electrolyte: experiments and CFD modelling[J]. Chemical Engineering Science, 2014, 111: 255-265. |
| [18] | Arbabi F, Montazeri H, Abouatallah R, et al. Three-dimensional computational fluid dynamics modelling of oxygen bubble transport in polymer electrolyte membrane electrolyzer porous transport layers[J]. Journal of the Electrochemical Society, 2016, 163(11): F3062-F3069. |
| [19] | Vachaparambil K J, Einarsrud K E. Numerical simulation of continuum scale electrochemical hydrogen bubble evolution[J]. Applied Mathematical Modelling, 2021, 98: 343-377. |
| [20] | Zarghami A, Deen N G, Vreman A W. CFD modeling of multiphase flow in an alkaline water electrolyzer[J]. Chemical Engineering Science, 2020, 227: 115926. |
| [21] | Mat M D, Aldas K. Application of a two-phase flow model for natural convection in an electrochemical cell[J]. International Journal of Hydrogen Energy, 2005, 30(4): 411-420. |
| [22] | Mat M D, Aldas K, Ilegbusi O J. A two-phase flow model for hydrogen evolution in an electrochemical cell[J]. International Journal of Hydrogen Energy, 2004, 29(10): 1015-1023. |
| [23] | Mandin P, Hamburger J, Bessou S, et al. Modelling and calculation of the current density distribution evolution at vertical gas-evolving electrodes[J]. Electrochimica Acta, 2005, 51(6): 1140-1156. |
| [24] | Eigeldinger J, Vogt H. The bubble coverage of gas-evolving electrodes in a flowing electrolyte[J]. Electrochimica Acta, 2000, 45(27): 4449-4456. |
| [25] | Li Y F, Kang Z Y, Mo J K, et al. In-situ investigation of bubble dynamics and two-phase flow in proton exchange membrane electrolyzer cells[J]. International Journal of Hydrogen Energy, 2018, 43(24): 11223-11233. |
| [26] | Gilliam R J, Graydon J W, Kirk D W, et al. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures[J]. International Journal of Hydrogen Energy, 2007, 32(3): 359-364. |
| [27] | Sipos P M, Hefter G, May P M. Viscosities and densities of highly concentrated aqueous MOH solutions (M+ = Na+, K+, Li+, Cs+, (CH3)4N+) at 25.0 ℃[J]. Journal of Chemical & Engineering Data, 2000, 45(4): 613-617. |
| [28] | Dunlap P M, Faris S R. Surface tension of aqueous solutions of potassium hydroxide[J]. Nature, 1962, 196: 1312-1313. |
| [29] | German S R, Edwards M A, Ren H, et al. Critical nuclei size, rate, and activation energy of H2 gas nucleation[J]. Journal of the American Chemical Society, 2018, 140(11): 4047-4053. |
| [30] | Kong G, Mirsandi H, Buist K A, et al. Oscillation dynamics of a bubble rising in viscous liquid[J]. Experiments in Fluids, 2019, 60(8): 130. |
| [1] | Zixiang ZHAO, Zhongdi DUAN, Haoran SUN, Hongxiang XUE. Numerical modelling of water hammer induced by two phase flow with large temperature difference [J]. CIESC Journal, 2025, 76(S1): 170-180. |
| [2] | Junlong KONG, Yang BI, Yao ZHAO, Yanjun DAI. Simulation experiment on direct cooling thermal management system for energy storage batteries [J]. CIESC Journal, 2025, 76(S1): 289-296. |
| [3] | Junpeng WANG, Jiaqi FENG, Enbo ZHANG, Bofeng BAI. Study on flow and cavitation characteristic in zigzag and array labyrinth valve core structures [J]. CIESC Journal, 2025, 76(S1): 93-105. |
| [4] | Ziteng YAN, Feilong ZHAN, Guoliang DING. Structural design and effect verification of casing-type distributor used in air-conditioners [J]. CIESC Journal, 2025, 76(S1): 152-159. |
| [5] | Lian DUAN, Xingrui ZHOU, Wenjun YUAN, Fei CHEN. Effects of continuous phase velocity pulsations on the formation and morphology of polymer droplets in microchannels [J]. CIESC Journal, 2025, 76(9): 4578-4585. |
| [6] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [7] | Hailong SHE, Guangzhong HU, Xiaoyu CUI, Zhongbin LIU, Di PENG, Hang LI. Performance study on layered microchannel distributed throttling cryocooler with different working fluids [J]. CIESC Journal, 2025, 76(8): 4017-4029. |
| [8] | Lu LIU, Ying YANG, Haowen YANG, Tai WANG, Teng WANG, Xinyu DONG, Run YAN. Experimental investigations of condensation droplet shedding characteristics on star-shaped hydrophobic-hydrophilic hybrid surfaces [J]. CIESC Journal, 2025, 76(8): 3905-3914. |
| [9] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [10] | Hang ZHOU, Sijing ZHANG, Jian LIU, Xiaosong ZHANG. Numerical analysis of flow boiling heat transfer of zeotropic mixtures in mini-channels [J]. CIESC Journal, 2025, 76(8): 3864-3872. |
| [11] | Xiaojiang LIANG, Weiwei CHEN, Jianan LUO, Haotian FEI, Xuelei YE, Wenhao LI, Yong NIE. Dispersion characteristics of charged bubbles in an electric dispersion tubular packed bed [J]. CIESC Journal, 2025, 76(8): 3915-3931. |
| [12] | Zicheng ZHU, Yunpeng JIAO, Mengxi LIU, Jianhua CHEN. Simulation analysis on effects of spargers and baffles in three-phase fluidized bed [J]. CIESC Journal, 2025, 76(8): 3873-3884. |
| [13] | Yitong ZHOU, Mingxi ZHOU, Ruochen LIU, Shuang YE, Weiguang HUANG. Technical and economic analysis on hydrogen based direct reduction steelmaking co-driven by photovoltaic and power grid [J]. CIESC Journal, 2025, 76(8): 4318-4330. |
| [14] | Xiayu FAN, Jianchen SUN, Keying LI, Xinya YAO, Hui SHANG. Machine learning drives system optimization of liquid organic hydrogen storage technology [J]. CIESC Journal, 2025, 76(8): 3805-3821. |
| [15] | Ning YANG, Haonan LI, Xiao LIN, Stella GEORGIADOU, Wen-Feng LIN. Application of plastic-derived carbon@CoMoO4 composites as an efficient electrocatalyst for hydrogen evolution reaction in water electrolysis [J]. CIESC Journal, 2025, 76(8): 4081-4094. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||