[1] |
Angumeenal A, Venkappayya D. An overview of citric acid production [J]. LWT Food Sci. Technol., 2013, 50 (2): 367-370.
|
[2] |
Guo Yanmei (郭艳梅), Zheng Ping (郑平), Sun Jibin (孙际宾). Aspergillus niger as a potential cellular factory: prior knowledge and key technology [J].Chin. J. Biotech., 2010, 26 (10): 1410-1418.
|
[3] |
Papagianni M. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects. Membrane transport and modeling [J]. Biotechnol. Adv., 2007, 25 (3): 244-263.
|
[4] |
Nie Guoxing (聂国兴), Song Dongying (宋东蓥), Ming Hong (明红), Hu Xiaolong (胡晓龙), Gao Hang (高航). Construction of kinetic model for C71 batch fermentation by Aspergillus niger [J]. Henan Normal University: Natural Science (河南师范大学学报:自然科学版), 2010, 38 (2): 148-155.
|
[5] |
Zhang Xiaohao (张小昊), Tong Qunyi (童群义). The kinetics model of producing sodium gluconate for batch fermentation by Aspergillus niger [J]. Food Industry (食品工业科技), 2010, 31 (12): 221-223.
|
[6] |
Liu Jianzhong (刘建中), Weng Liping (翁丽萍), Zhang Qianling (张黔玲), Ji Liangnian (计亮年). A mathematical model of catalase fermentation process by A. niger [J]. Industrial Microbiology (工业微生物), 2002, 32 (3): 6-9.
|
[7] |
García J, Torres N. Mathematical modeling and assessment of the pH homeostasis mechanisms in Aspergillus niger while in citric acid producing conditions [J]. Journal of Theoretical Biology, 2011, 282: 23-35.
|
[8] |
Straight J V, Ramkrishna D. Cybernetic modeling and regulation of metabolic pathways, growth on complementary nutrients [J]. Biotechnology Progress, 1994, 10 (6): 574-587.
|
[9] |
Kompala D S, Ramkrishna D, Tsao G T. Cybernetic modeling of microbial growth on multiple substrates [J]. Biotechnol. Bioeng., 1984, 26: 1272-1281.
|
[10] |
Mandli A R, Modak J M. Cybernetic modeling of adaptive prediction of environmental changes by microorganisms [J]. Math. Biosci., 2014, 248: 40-45.
|
[11] |
Varner J, Ramkrishna D. Metabolic engineering from a cybernetic perspective (Ⅰ): Theoretical preliminaries [J]. Biotechnol. Progr., 1999, 15: 407-425.
|
[12] |
Gadkar K G, Doyle III F J, Crowley T J, Varner J D. Cybernetic model predictive control of a continuous bioreactor with cell recycle [J]. Biotechnol. Progr., 2003, 19: 1487-1497.
|
[13] |
Li Yin (李寅),Cao Zhu'an (曹竹安). Microbial metabolic engineering: gateway to develop blueprints for cell factories [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2004, 55 (10): 1573-158.
|
[14] |
Gao Zhen (高振), Xiong Qiang (熊强), Xu Qing (徐晴), Song Ping (宋萍), Li Shuang (李霜). Application of metabolic flux analysis in the progress of enzyme synthesis [J]. Chemical Industry and Engineering Progress (化工进展), 2013, 32 (7): 1625-1628.
|
[15] |
Sun J B, Lu X, Rinas U, Zeng A P. Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics [J]. Genome Biology, 2007, 8 (9): R182.
|
[16] |
Andersen M R, Nielsen M L, Nielsen J. Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger [J]. Molecular Systems Biology, 2008, 4: 178.
|
[17] |
Torres N V. Modeling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger (I): Model definition and stability of the steady state [J]. Biotechnol. Bioeng., 1994, 44: 104-111.
|
[18] |
Karaffa L, Kubicek C P. Aspergillus niger citric acid accumulation: do we understand this well working black box [J]. Applied Microbiology and Biotechnology, 2003, 61: 189-196.
|
[19] |
Sweetlove L J, Beard K, Nunes-Nesi A, Fernie A R, Ratcliffe R G. Not just a circle: flux modes in the plant TCA cycle [J]. Trends in Plant Science, 2010, 15 (8): 462-470.
|
[20] |
Straight J, Ramkrishna D. Cybernetic modeling and regulation of metabolic pathways. Growth on complimentary nutrients [J]. Biotechnol. Progr., 1994, 10: 574-587.
|
[21] |
Varner J, Ramkrishna D. The non-linear analysis of cybernetic models. Guidelines for model formulation [J]. Journal of Biotechnology, 1999, 71 (1): 67-103.
|
[22] |
Kim J, Varner J, Ramkrishna D. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables [J]. Biotechnol. Progr., 2008, 24: 993-1006.
|
[23] |
Namjoshi A A, Ramkrishina. A cybernetic modeling framework for analysis of metabolic systems [J]. Computers and Chemical Engineering, 2004, 29: 487-498.
|
[24] |
Bellgardt K H, Kuhlmann W, Meyer H D, et al. Application of an extended Kalman filter for state estimation of a yeast fermentation [J]. IEE Proceedings D:Control Theory and Applications, 1986, 133 (5): 226-234.
|
[25] |
Ren H T, Yuan J Q, Bellgardt K H. Macrokinetic model for methylotrophic Pichia pastoris based on stoichiometric balance [J]. Journal of Biotechnology, 2003, 106 (1): 53-68.
|
[26] |
Kubicek C P, Zehentgruber O, Röhr M. An indirect method for studying fine control of citric acid accumulation by Aspergillus niger [J]. Biotechnology Letters, 1979, 1: 47-52.
|
[27] |
Habison A, Kubicek C P, Röhr M. Partial purification and regulatory properties of phosphofructokinase from Aspergillus niger [J]. Biochem. J., 1983, 209: 669-676.
|
[28] |
Steinbock F A, Chojun S, Held I, Röhr M, Kubicek C P. Characterization and regulatory properties of a single hexokinase from the citric acid accumulating fungus Aspergillus niger [J]. Biochim. Biophys. Acta, 1994, 1200: 215-223.
|
[29] |
Cleland W W, Johnson M J. Tracer experiments on the mechanism of citric acid formation by Aspergillus niger [J]. J. Biol. Chem.,1954, 208:679-692.
|
[30] |
Mattey M. The production of organic acids [J]. Crit. Rev. Biotechnol., 1992, 12: 87-132.
|
[31] |
Meixner-Monori B, Kubicek C P, Röhr M. Pyruvate kinase from Aspergillus niger: a regulatory enzyme in glycolysis [J]. Can. J. Microbiol., 1983, 30: 16-22.
|