[1] |
阳宜洋, 丁石, 金涌, 等. Rh/MgO/γ-Al2O3 上的毫秒级甲烷蒸汽重整过程[J]. 化工学报, 2009, 60(8):1981-1987. YANG Y Y, DING S, JIN Y, et al. Milliseconds steam reforming of methane using Rh/Mgo/γ-Al2O3 catalyst[J]. CIESC Journal, 2009, 60(8):1981-1987.
|
[2] |
ANGELI S D, MONTELEONE G, GIACONIA A, et al. State-of-the-art catalysts for CH4 steam reforming at low temperature[J]. Int. J. Hydrogen Energy, 2014, 39(5):1979-1997.
|
[3] |
ARCOTUMAPATHY V, SIAHVASHI A, ADESINA A A. A new weighted optimal combination of ANNs for catalyst design and reactor operation:methane steam reforming studies[J]. AIChE J., 2012, 58(8):2412-2427.
|
[4] |
LI S R, GONG J L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chem. Soc. Rev., 2014, 43(21):7245-7256.
|
[5] |
MALUF S S, ASSAF E M. Ni catalysts with Mo promoters for methane steam reforming[J]. Fuel, 2009, 88(9):1547-1553.
|
[6] |
DUARTE R B, KRUMEICH F, VAN Bokhoven J A. Structure, activity, and stability of atomically dispersed Rh in methane steam reforming[J]. ACS Catal., 2014, 4(5):1279-1286.
|
[7] |
KIM H W, KANG K M, KWAK H Y, et al. Preparation of supported Ni catalysts on various metal oxides with core/shell structures and their tests for the steam reforming of methane[J]. Chem. Eng. J., 2011, 168(2):775-783.
|
[8] |
FAURE R, ROSSIGNOL F, CHARTIER T, et al. Alumina foam catalyst supports for industrial steam reforming processes[J]. J. Europ. Ceram. Soc., 2011, 31(3):303-312.
|
[9] |
TAKEHIRA K. "Intelligent" reforming catalysts:trace noble metal-doped Ni/Mg(Al)O derived from hydrotalcites[J]. J. Nat. Gas Chem., 2009, 18(3):237-259.
|
[10] |
JIMENEZ-GONZALEZ C, BOUKHA Z, DE RIVAS B, et al. Behaviour of coprecipitated NiAl2O4/Al2O3 catalysts for low-temperature methane steam reforming[J]. Energy & Fuels, 2014, 28(11):7109-7121.
|
[11] |
TRIMM D L. Catalysts for the control of coking during steam reforming[J]. Catal. Today, 1999, 49(1/2/3):3-10.
|
[12] |
FROMENT G F, BISCHOFF K B, WILDE J D. Chemical Reactor Analysis and Design[M]. 3rd ed. New Jersey:John Wiley & Sons, 2011:505-509.
|
[13] |
XU J G, FROMENT G F. Methane steam reforming(Ⅱ):Diffusional limitations and reactor simulation[J]. AIChE Journal, 1989, 35(1):97-103.
|
[14] |
OLIVEIRA E L G, GRANDE C A, RODRIGUES A E. Methane steam reforming in large pore catalyst[J]. Chem. Eng. Sci., 2010, 65(5):1539-1550.
|
[15] |
PANTOLEONTOS G, KIKKINIDES E S, GEORGIADIS M C. A heterogeneous dynamic model for the simulation and optimisation of the steam methane reforming reactor[J]. Int. J. Hydrogen Energy, 2012, 37(21):16346-16358.
|
[16] |
ROUT K R, JAKOBSEN H A. Simulation of pellet model with multicomponent mass diffusion closure using least squares spectral element solution method[J]. Can. J. Chem. Eng., 2013, 91(9):1547-1567.
|
[17] |
HARTMANN V L, OBYSOV A V, DULNEV A V, et al. New basic shape of catalysts for natural gas reforming reactors[J]. Chem. Eng. J., 2011, 176/177:102-105.
|
[18] |
DIXON A G, BOUDREAU J, ROCHELEAU A, et al. Flow, transport, and reaction interactions in shaped cylindrical particles for steam methane reforming[J]. Ind. Eng. Chem. Res., 2012, 51(49):15839-15854.
|
[19] |
QI Y, CHENG Z M, ZHOU Z M. Steam reforming of methane over Ni catalysts from hydrotalcite-type precursors:catalytic activity and reaction kinetics[J]. Chin. J. Chem. Eng., 2015, 23(1):76-85.
|
[20] |
GHOUSE J, ADAMS T A. A multi-scale dynamic two-dimensional heterogeneous model for catalytic steam methane reforming reactors[J]. Int. J. Hydrogen Energy, 2013, 38(24):9984-9999.
|
[21] |
YAWS C L. Chemical Properties Handbook[M]. New York:McGraw-Hill, 1999:314-339.
|
[22] |
VILLADSEN J, MICHELSEN M L. Solution of Differential Equation Models by Polynomial Approximation[M]. New Jersey:Prentice-Hall, 1978:273-294,417-440.
|
[23] |
SATTERFIELD C N. Heterogeneous Catalysis in Industrial Practice[M]. 2nd ed. New York:McGraw-Hill, 1991.
|
[24] |
ROSTRUP-NIELSEN J, CHRISTIANSEN L J. Concepts in Syngas Manufacture[M]. London:Imperial College Press, 2011:149,162.
|
[25] |
SADOOGHI P, RAUCH R. Pseudo heterogeneous modeling of catalytic methane steam reforming process in a fixed bed reactor[J]. J. Nat. Gas Sci. Eng., 2013, 11:46-51.
|
[26] |
BENYAHIA F, O'NEILL K E. Enhanced voidage correlations for packed beds of various particle shapes and sizes[J]. Particul. Sci. Technol., 2005, 23(2):169-177.
|
[27] |
BAEK S M, KANG J H, LEE K J, et al. A numerical study of the effectiveness factors of nickel catalyst pellets used in steam methane reforming for residential fuel cell applications[J]. Int. J. Hydrogen Energy, 2014, 39(17):9180-9192.
|
[28] |
HALLAJBASHI N, BAGHAEE M R. The effectiveness factor determination for a three hole cylindrical catalyst pellet in a steam methane reforming reaction[J]. Energ. Source Part A, 2014, 36(4):366-373.
|
[29] |
ALBERTON A L, SCHWAAB M, FONTES C E, et al. Hybrid modeling of methane reformers(I):A metamodel for the effectiveness factor of a catalyst pellet with complex geometry[J]. Ind. Eng. Chem. Res., 2009, 48(21):9369-9375.
|
[30] |
朱志庆. 化工工艺学[M]. 北京:化学工业出版社, 2007:40-41. ZHU Z Q. Chemical Engineering Process[M]. Beijing:Chemical Industry Press, 2007:40-41.
|