CIESC Journal ›› 2016, Vol. 67 ›› Issue (5): 2056-2063.DOI: 10.11949/j.issn.0438-1157.20151527

Previous Articles     Next Articles

Synchronously degradation of biogas slurry and triphenyltin chloride in microbial fuel cell

GU Dongyan1,2, JIA Honghua1,2, WU Yuandong1,2, ZHOU Jun1,2, WU Xiayuan1,2, ZHENG Tao3, YONG Xiaoyu1,2   

  1. 1 School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China;
    2 Bioenergy Research Institute, Nanjing Tech University, Nanjing 211816, Jiangsu, China;
    3 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
  • Received:2015-10-09 Revised:2015-11-18 Online:2016-05-05 Published:2016-05-05
  • Supported by:

    supported by the National Basic Research Program of China (2013CB733904), the Natural Science Foundation of Jiangsu Province (BK20130932), the Natural Science Foundation of the Jiangsu Higher Education Institutions (13KJB530009) and the Special Research Fund Project of Key Laboratory of Environmental and Applied Microbiology of CAS (KLEAMCAS201503).

利用微生物燃料电池同步降解沼液和三苯基氯化锡

顾冬燕1,2, 贾红华1,2, 伍元东1,2, 周俊1,2, 吴夏芫1,2, 郑涛3, 雍晓雨1,2   

  1. 1 南京工业大学生物与制药工程学院, 江苏 南京 211816;
    2 南京工业大学生物能源研究所, 江苏 南京 211816;
    3 中国科学院广州能源研究所, 广东 广州 510640
  • 通讯作者: 雍晓雨
  • 基金资助:

    国家重点基础研究发展计划项目(2013CB733904);江苏省自然科学基金项目(BK20130932);江苏省高校自然科学研究项目(13KJB530009);中国科学院环境与应用微生物重点实验室专项研究基金计划(KLEAMCAS201503)。

Abstract:

As a novel electrochemical apparatus for synchronous electricity generation and decontamination, microbial fuel cell (MFC) provides a way to effectively deal with the refractory pollutant. A new method of electricity production by anodic biogas slurry coupling with cathodic triphenyltin chloride degradation was proposed based on the cathodic “Fenton” reaction in a typical dual-chamber MFC. The results showed that the maximum voltage was 50.32% higher and the stable time of the voltage was 2 times longer after biofilms domestication. In the end of the operation, the removal efficiency of COD, Total N and Total P of the biogas slurry were 85.35%±1.53%, 59.20%±5.24% and 44.98%±3.57%, respectively. Besides, the triphenyltin chloride (TPTC) degradation efficiency decreased with increasing initial concentration. In addition, when 100 μmol·L-1 TPTC was added to the cathodic chamber, the highest output voltage and the maximum power density of the MFC arrived at 280.2 mV and 145.62 mW·m-2, respectively. TPTC was removed after 14 d with the degradation of 91.88% and a rate of about 0.273 μmol·L-1·h-1. This study provided the foundational supports for simultaneously decomposing anodic organic effluent and cathodic organic pollution by MFC.

Key words: microbial fuel cell, electricity generation, degradation, biogas slurry, triphenyltin chloride, electrochemistry, bioprocess

摘要:

微生物燃料电池(MFC)作为一种同步产电和除污的新型电化学装置,为有效处理难降解有机污染物提供了一种途径。基于阴极Fenton反应,提出了一种耦合典型双室MFC中阳极沼液产电及阴极降解有机锡的新方法。结果表明,阳极产电生物膜经驯化后MFC的最高电压提高了50.32%,而且电压稳定时间延长了1倍。MFC运行结束后,阳极沼液COD、总氮、总磷的去除率分别为85.35%±1.53%、59.20%±5.24%、44.98%±3.57%。阴极三苯基氯化锡(TPTC)的降解率随其初始浓度增加而降低。在添加100 μmol·L-1 TPTC时,MFC的最高输出电压为280.2 mV,最大功率密度为145.62 mW·m-2。TPTC在14 d后完全降解,降解效率为91.88%,降解速率约为0.273 μmol·L-1·h-1。研究结果可为利用MFC同步处理阳极有机废水和阴极有机污染物的实际应用提供基础支持。

关键词: 微生物燃料电池, 产电, 降解, 沼液, 三苯基氯化锡, 电化学, 生物过程

CLC Number: