[1] |
FUJIMOTO K, SHIKADA T. Selective synthesis of C2-C5 hydrocarbons from carbon dioxide utilizing a hybrid catalyst composed of a methanol synthesis catalyst and zeolite[J]. Appl. Catal., 1987, 31(1):13-23.
|
[2] |
WILLNER I, MAIDAN R, MANDLER D, et al. Photosensitized reduction of carbon dioxide to methane and hydrogen evolution in the presence of ruthenium and osmium colloids:strategies to design selectivity of products distribution[J]. J. Am. Chem. Soc., 1987, 109(20):6080-6086.
|
[3] |
DELACOURT C, RIDGWAY P L, KERR J B, et al. Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. J. Am. Chem. Soc., 2008, 155(1):B42-B49.
|
[4] |
ZHANG L, NIU D F, ZHANG K, et al. Electrochemical activation of CO2 in ionic liquid (BMIMBF4):synthesis of organic carbonates under mild conditions[J]. Green Chem., 2008, 10:202-206.
|
[5] |
GATTRELL M, GUPTA N, CO A. Electrochemical reduction of CO to hydrocarbons to store renewable electrical energy and upgrade biogas[J]. Energy Convers. Manage., 2007, 48(4):1255-1265.
|
[6] |
DUBOIS M R, DUBOIS D L. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation[J]. Acc. Chem. Res., 2009, 42(12):1974-1982.
|
[7] |
JONATHAN R, GREGORY S, QI L, et al. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces[J]. ACS Catal., 2015, 5(7):4293-4299.
|
[8] |
SALEHI-KHOJIN A, ROSEN B A, ZHU W, et al. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis[J]. J. Phys. Chem., 2013, 117(4):1627-1632.
|
[9] |
LI Q Z, CHEN L, MICHAEL J, et al. Selective CO2 reduction on a polycrystalline Ag electrode enhanced by anodization treatment[J]. Chem. Comm., 2015, 51(100):17704-17707.
|
[10] |
QI L, JONATHAN R, YANG Z, et al. A selective and efficient electrocatalyst for carbon dioxide reduction[J]. Nat. Commun., 2014, 5(1):149-168.
|
[11] |
HOSHI N, KATO M, HORI Y, et al. Electrochemical reduction of CO2 on a single crystal electrodes of silver Ag(111), Ag(100) and Ag(110)[J]. J. Electroanal. Chem., 1997, 440(1/2):283-286.
|
[12] |
PENG K, CHEN C, ZUO F C, et al. Selective electrocatalytic reduction of CO2 to formate by water-stable iridium dihydride pincer complexes[J]. J. Am. Chem. Soc., 2012, 134(12):5500-5503.
|
[13] |
ROSEN B A, THORSON M R, WHIPPLE D T, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011, 334(6056):643-644.
|
[14] |
MURATA A, HORI Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at Cu electrode[J]. Chem. Soc. Jpn., 1991, 64(1):123-127.
|
[15] |
YANO H, TANAKA T, NAKAYAMA M, et al. Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper(Ⅰ) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides[J]. J. Electroanal. Chem., 2004, 565(2):287-293.
|
[16] |
KRAMER W W, MCCRORY C C L. Polymer coordination promotes selective CO2 reduction by cobalt phthalocyanine[J]. Chem. Sci., 2016, 7:2506-2515.
|
[17] |
CHEN Y H, LI C W, KANAN M W, et al. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. J. Am. Chem. Soc., 2012, 134(49):19969-19972.
|
[18] |
GAO D F, WANG J, WU H H, et al. pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles[J]. Electrochem. Commun., 2015, 55:1-5.
|
[19] |
VARELA S A, WEN J, REIER T, et al. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides[J]. ACS Catal., 2016, 6(4):2136-2144.
|
[20] |
VARELA S A, KROSCHEL M, REIER T, et al. Controlling the selectivity of CO2 electroreduction on copper:the effect of the electrolyte concentration and the importance of the local pH[J]. Catal. Today, 2015, 6:1-6.
|
[21] |
HORI Y, TAKAHASHI R, MURATA A, et al. Electrochemical reduction of CO at a copper electrode[J]. J. Phys. Chem. B, 1997, 101(36):7075-7081.
|
[22] |
YOON Y, WUTTING A, HALL A S, et al. Mesostructure-induced selectivity in CO2 reduction catalysis[J]. J. Am. Chem. Soc., 2015, 137(47):14834-14837.
|
[23] |
HSIEH Y C, ZHANG Y, XU W Q, et al. Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction[J]. ACS Catal., 2015, 5(9):5349-5356.
|
[24] |
EXNER K S, ANTON J, JACOB T, et al. Microscopic insights into the chlorine evolution reduction on RuO2(110):a mechanistic ab initio atomistic thermodynamics study[J]. Electrocatal., 2015, 6(2):163-172.
|
[25] |
MARIA L F, MASSIMO I, FRANCESCA L, et al. Chloride and iodide electrosorption on Ag(111)[J]. J. Electroanal. Chem., 2010, 649:89-94.
|
[26] |
HAMDY H H, MAGDY A M, MOHAMMED A A, et al. Comparative studies of the electrochemical behavior of silver electrode in chloride, bromide and iodide aqueous solutions[J]. Int. J. Electrochem. Sci., 2010, 5:278-294.
|
[27] |
LUI G F, PATRIZIA R M, SERGIO T, et al. Specific adsorption of bromide and iodide anions from nonaqueous solutions on controlled-surface polycrystalline silver electrodes[J]. J. Electroanal. Chem., 2006, 593:185-193.
|
[28] |
MAURICE V, KLEIN L H, MARCUS P, et al. In situ STM study of the surface structure, dissolution, and early stages of electrochemical oxidation of the Ag(111) electrode[J]. J. Phys. Chem. C, 2007, 111:16351-16361.
|
[29] |
STREHBLOW H H, HECHT D L. Bromide adsorption on silver in alkaline solution:a surface analytical study[J]. Ber. Bunseges. Phys. Chem., 1998, 102(6):826-832.
|