CIESC Journal ›› 2017, Vol. 68 ›› Issue (6): 2359-2367.DOI: 10.11949/j.issn.0438-1157.20170043
Previous Articles Next Articles
ZHANG Tao1,2, LIU Qiying1, ZHANG Caihong2,3, ZHANG Qi1, MA Longlong1
Received:
2017-01-10
Revised:
2017-02-24
Online:
2017-06-05
Published:
2017-06-05
Contact:
10.11949/j.issn.0438-1157.20170043
Supported by:
supported by the National Natural Science Foundation of China(51376185, 51536009, 51576199)
张涛1,2, 刘琪英1, 张彩红2,3, 张琦1, 马隆龙1
通讯作者:
刘琪英
基金资助:
国家自然科学基金项目(51376185,51536009,51576199)
CLC Number:
ZHANG Tao, LIU Qiying, ZHANG Caihong, ZHANG Qi, MA Longlong. Selective hydrogenolysis of sorbitol on Ni/La2O2CO3 catalysts[J]. CIESC Journal, 2017, 68(6): 2359-2367.
张涛, 刘琪英, 张彩红, 张琦, 马隆龙. Ni/La2O2CO3催化剂对山梨醇氢解产物的选择性调控[J]. 化工学报, 2017, 68(6): 2359-2367.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170043
[1] | Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. |
[2] | Serrano-Ruiz J C, Luque R, Sepulveda-Escribano A. Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing[J]. Chemical Society Reviews, 2011, 40(11): 5266-5281. |
[3] | Gallezot P. Conversion of biomass to selected chemical products[J]. Chemical Society Reviews, 2012, 41(4): 1538-1558. |
[4] | Kunkes E L, Simonetti D A, West R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900): 417-421. |
[5] | 沈宜泓, 王帅, 罗琛, 等. 生物质利用新途径: 多元醇催化合成可再生燃料和化学品[J]. 化学进展, 2007, 19(2): 431-436. |
SHEN Y H, WANG S, LUO S, et al. Biomass-derived polyols as new bio-platform molecules for sustainable production of fuels and chemicals[J]. Progress in Chemistry, 2007, 19(2/3): 431-436. | |
[6] | 周日尤, 伍玉碧. 我国山梨醇工业的现状与发展[J]. 现代化工, 2000, 20(9): 49-51. |
Zhou R y, Wu Y b. Current situation and development of sorbitol's production and application in China[J]. Modern Chemical Industry, 2000, 20(9): 49-51. | |
[7] | Leo I M, Granados M L, Fierro J L G, et al. Sorbitol hydrogenolysis to glycols by supported ruthenium catalysts[J]. Chinese Journal of Catalysis, 2014, 35(5): 614-621. |
[8] | Jin X, Shen J, Yan W, et al. Sorbitol hydrogenolysis over hybrid Cu/CaO-Al2O3 catalysts: tunable activity and selectivity with solid base incorporation[J]. ACS Catalysis, 2015, 5(11): 6545-6558. |
[9] | Hoffer B W, Crezee E, Devred F, et al. The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of D-glucose to D-sorbitol[J]. Applied Catalysis A: General, 2003, 253(2): 437-452. |
[10] | 刘琪英, 廖玉河, 石宁, 等. 生物质多元醇选择性催化氢解制小分子二元醇研究进展[J]. 化工进展, 2013, 32(5): 1035-1042. |
Liu Q Y, Liao Y H, Shi N, et al. A review on small molecular diols production by catalytic hydrogenolysis of biomass derived polyols[J]. Chemical Industry & Engineering Progress, 2013, 32(5):1035-1263. | |
[11] | Che T M, Westfield N J. Production of propanediols from glycerol: US4642394[P]. 1987-02-10. |
[12] | Maris E P, Davis R J. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts[J]. Journal of Catalysis, 2007, 249(2): 328-337. |
[13] | Zhang J, Lu F, Yu W, et al. Effects of alkaline additives on the formation of lactic acid in sorbitol hydrogenolysis over Ni/C catalyst[J]. Chinese Journal of Catalysis, 2016, 37(1): 177-183. |
[14] | Zhang J, Li J, Wu S B, et al. Advances in the catalytic production and utilization of sorbitol[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 11799-11815. |
[15] | Liu H, Huang Z, Xia C, et al. Selective hydrogenolysis of xylitol to ethylene glycol and propylene glycol over silica dispersed copper catalysts prepared by a precipitation-gel method[J]. ChemCatChem, 2014, 6(10): 2918-2928. |
[16] | Zhao L, Zhou J, Chen H, et al. Carbon nanofibers supported Ru catalyst for sorbitol hydrogenolysis to glycols: effect of calcination[J]. Korean Journal of Chemical Engineering, 2010, 27(5): 1412-1418. |
[17] | Zhang Q, Jiang T, Li B, et al. Highly selective sorbitol hydrogenolysis to liquid alkanes over Ni/HZSM-5 catalysts modified with pure silica MCM-41[J]. ChemCatChem, 2012, 4(8): 1084-1087. |
[18] | Sun J, Liu H. Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on Ni/C and basic oxide-promoted Ni/C catalysts[J]. Catalysis Today, 2014, 234(10): 75-82. |
[19] | Banu M, Sivasanker S, Sankaranarayanan T M, et al. Hydrogenolysis of sorbitol over Ni and Pt loaded on NaY[J]. Catalysis Communications, 2011, 12(7): 673-677. |
[20] | Zhang J, Lu F, Yu W, et al. Selective hydrogenative cleavage of C—C bonds in sorbitol using Ni-Re/C catalyst under nitrogen atmosphere[J]. Catalysis Today, 2014, 234(10):107-112. |
[21] | Guo X, Guan J, Li B, et al. Conversion of biomass-derived sorbitol to glycols over carbon-materials supported Ru-based catalysts[J]. Scientific Reports, 2015, 5:16451. |
[22] | Ye L, Duan X, Lin H, et al. Improved performance of magnetically recoverable Ce-promoted Ni/Al2O3 catalysts for aqueous-phase hydrogenolysis of sorbitol to glycols[J]. Catalysis Today, 2012, 183(1): 65-71. |
[23] | Du W, Zheng L, Li X, et al. Plate-like Ni-Mg-Al layered double hydroxide synthesized via a solvent-free approach and its application in hydrogenolysis of D-sorbitol[J]. Applied Clay Science, 2016, 123: 166-172. |
[24] | Du W C, Zheng L P, Shi J J, et al. Production of C2 and C3 polyols from D-sorbitol over hydrotalcite-like compounds mediated bi-functional Ni-Mg-AlOx catalysts[J]. Fuel Processing Technology, 2015, 139: 86-90. |
[25] | Weingarten R, Conner W C, Huber G W. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst[J]. Energy & Environmental Science, 2012, 5(6): 7559-7574. |
[26] | Liao Y, Liu Q, Wang T, et al. Zirconium phosphate combined with Ru/C as a highly efficient catalyst for the direct transformation of cellulose to C6 alditols[J]. Green Chemistry, 2014, 16(6): 3305-3312. |
[27] | Cao X, Zhang Q, Jiang D, et al. Sorbitol hydrogenolysis to glycols over baisic additive promoted Ni-based catalysts[J]. Chinese Journal of Chemical Physics, 2015, 28(3): 338-344. |
[28] | Wang F, Shi R, Liu Z Q, et al. Highly efficient dehydrogenation of primary aliphatic alcohols catalyzed by Cu nanoparticles dispersed on rod-shaped La2O2CO3[J]. ACS Catalysis, 2013, 3(5): 890-894. |
[29] | Ruckenstein E, Hu Y H. Interactions between Ni and La2O3 in Ni/La2O3 catalysts prepared using different Ni precursors[J]. Journal of Catalysis, 1996, 161(1): 55-61. |
[30] | Sutthiumporn K, Kawi S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4: role of surface oxygen species on H2 production and carbon suppression[J]. International Journal of Hydrogen Energy, 2011, 36(22): 14435-14446. |
[31] | Shi R, Wang F, Li Y, et al. A highly efficient Cu/La2O3 catalyst for transfer dehydrogenation of primary aliphatic alcohols[J]. Green Chemistry, 2010, 12(1): 108-113. |
[32] | Hengne A M, Rode C V. Cu-ZrO2 nanocomposite catalyst for selective hydrogenation of levulinic acid and its ester to γ-valerolactone[J]. Green Chemistry, 2012, 14(4): 1064-1072. |
[33] | Gutiérrez-Ortiz J I, De Rivas B, López-Fonseca R, et al. Catalytic purification of waste gases containing VOC mixtures with Ce/Zr solid solutions[J]. Applied Catalysis B: Environmental, 2006, 65(3): 191-200. |
[34] | Wolf E E, Alfani F. Catalysts deactivation by coking[J]. Catalysis Reviews Science and Engineering, 1982, 24(3): 329-371. |
[35] | Yamaguchi A, Hiyoshi N, Sato O, et al. Sorbitol dehydration in high temperature liquid water[J]. Green Chemistry, 2011, 13(4): 873-881. |
[36] | Fleche G, Huchette M. Isosorbide. Preparation, properties and chemistry[J]. Starch‐Stärke, 1986, 38(1): 26-30. |
[37] | Szafranek J, Wi?niewski A. Gas-liquid and high-performance liquid chromoatographic analyses of the acid-catalyzed dehydration reaction of xylitol[J]. Journal of Chromatography A, 1980, 187(1): 131-143. |
[38] | Yamaguchi A, Muramatsu N, Mimura N, et al. Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water[J]. Physical Chemistry Chemical Physics, 2017, 19: 2714-2722. |
[39] | Tajvidi K, Hausoul P J C, Palkovits R. Hydrogenolysis of cellulose over Cu-based catalysts—analysis of the reaction network[J]. ChemSusChem, 2014, 7(5): 1311-1317. |
[1] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[6] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[7] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[8] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[9] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
[10] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[11] | Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies [J]. CIESC Journal, 2023, 74(1): 397-407. |
[12] | Jing ZHANG, Tao LIU, Wei ZHANG, Zhenyu CHU, Wanqin JIN. Preparation of a novel separation-sensing membrane and its dynamic monitoring of blood glucose [J]. CIESC Journal, 2023, 74(1): 459-468. |
[13] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[14] | Wanchen ZHANG, Xiaoyang CHEN, Qiuqiu LYU, Qin ZHONG, Tenglong ZHU. Performance and durability of cobalt doped SrTi0.3Fe0.7O3-δ anode SOFC fueled with by-product gas from chemical industry [J]. CIESC Journal, 2022, 73(9): 4079-4086. |
[15] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||