CIESC Journal ›› 2017, Vol. 68 ›› Issue (10): 3860-3869.DOI: 10.11949/j.issn.0438-1157.20170500
Previous Articles Next Articles
HUANG Hong, YANG Siyu
Received:
2017-04-28
Revised:
2017-06-14
Online:
2017-10-05
Published:
2017-10-05
Supported by:
supported by the National Basic Research Program of China (2014CB744306).
黄宏, 杨思宇
通讯作者:
杨思宇,cesyyang@scut.edu.cn
基金资助:
国家重点基础研究发展计划项目(2014CB744306)。
CLC Number:
HUANG Hong, YANG Siyu. Design of a coal based methanol and power polygeneration process with low energy consumption for CO2 capture[J]. CIESC Journal, 2017, 68(10): 3860-3869.
黄宏, 杨思宇. 一种低能耗捕集CO2煤基甲醇和电力联产过程设计[J]. 化工学报, 2017, 68(10): 3860-3869.
[1] | 王倜, 刘培, 麻林巍, 等. 我国煤基多联产系统的发展潜力及技术路线研究[J]. 中国工程科学, 2015, 17(9):75-81. WANG T, LIU P, MA L W, et al. Study on China's developing potential and technical route of coal-based co-production system[J]. Engineering Science, 2015, 17(9):75-81. |
[2] | 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1):3-8. JIN Y, ZHOU Y C, HU S Y. Discussion on development of coal chemical industry using low carbon concept[J]. CIESC Journal, 2012, 63(1):3-8. |
[3] | STEINMANN Z J, VENKATESH A, HAUCK M, et al. How to address data gaps in life cycle inventories:a case study on estimating CO2 emissions from coal-fired electricity plants on a global scale[J]. Environmental Science & Technology, 2014, 48(9):5282-5289. |
[4] | LIU X, YANG S, HU Z, et al. Simulation and assessment of an integrated acid gas removal process with higher CO2 capture rate[J]. Computers & Chemical Engineering, 2015, 83:48-57. |
[5] | HIGGINS S J, LIU Y A. CO2 capture modeling, energy savings, and heat pump integration[J]. Industrial & Engineering Chemistry Research, 2015, 54(9):2526-2553. |
[6] | 李胜. CO2捕集能耗最小化机理及煤制天然气动力多联产系统[D]. 北京:中国科学院研究生院, 2012. LI S. The mechanism of minimal energy penalty for CO2 capture and the study on coal-based polygeneration system for cogenerating substitute natural gas and power[D]. Beijing:Graduate University of Chinese Academy of Sciences, 2012. |
[7] | LI S, JIN H, GAO L. Cogeneration of substitute natural gas and power from coal by moderate recycle of the chemical unconverted gas[J]. Energy, 2013, 55:658-667. |
[8] | LIN H, JIN H, GAO L, et al. Techno-economic evaluation of coal-based polygeneration systems of synthetic fuel and power with CO2 recovery[J]. Energy Conversion and Management, 2011, 52(1):274-283. |
[9] | 金红光, 张希良, 高林, 等. 控制CO2排放的能源科技战略综合研究[J]. 中国科学:技术科学, 2008, (9):1495-1506. JIN H G, ZHANG X L, GAO L, et al. Research on energy technology strategy for controlling CO2 emission[J]. Science in China:Series E, 2008, (9):1495-1506. |
[10] | 贺黎明, 沈召军. 甲烷的转化和利用[M]. 北京:化学工业出版社, 2005. HE L M, SHEN Z J. Conversion and Utilization of Methane[M]. Beijing:Chemical Industry Press, 2005. |
[11] | GONG M H, YI Q, HUANG Y, et al. Coke oven gas to methanol process integrated with CO2 recycle for high energy efficiency, economic benefits and low emissions[J]. Energy Conversion and Management, 2017, 133:318-331. |
[12] | 邓广义, 韩龙, 范永春, 等. 水煤浆气化合成气显热回收对IGCC电站性能的影响[J]. 动力工程学报, 2014, 34(12):985-989. DENG G Y, HAN L, FAN Y C, et al. Influence of syngas sensible heat recovery on performance of IGCC power plant based on coal water slurry gasification[J]. Journal of Chinese Society of Power Engineering, 2014, 34(12):985-989. |
[13] | MARTELLI E, KREUTZ T, CARBO M, et al. Shell coal IGCCS with carbon capture:conventional gas quench vs. innovative configurations[J]. Applied Energy, 2011, 88(11):3978-3989. |
[14] | KUO P C, WU W. Thermodynamic analysis of a combined heat and power system with CO2 utilization based on co-gasification of biomass and coal[J]. Chemical Engineering Science, 2016, 142:201-214. |
[15] | HIGMAN C, VAN DER BURGT M. Gasification[M]. Gulf Professional Publishing, 2011. |
[16] | 沙兴中, 杨南星. 煤的气化与应用[M]. 上海:华东理工大学出版社, 1995. SHA X Z, YANG N X. Coal Gasification and Its Application[M]. Shanghai:East China University of Science and Technology Press, 1995. |
[17] | PARK N, PARK M J, HA K S, et al. Modeling and analysis of a methanol synthesis process using a mixed reforming reactor:perspective on methanol production and CO2 utilization[J]. Fuel, 2014, 129:163-172. |
[18] | 刘霞. 煤制甲醇过程的低温余热利用与碳减排工艺研究[D]. 广州:华南理工大学, 2016. LIU X. The study on low temperature waste heat utilization and carbon reduction of coal-based methanol process[D]. Guangzhou:South China University of Technology, 2016. |
[19] | BUSSCHE K V, FROMENT G. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst[J]. Journal of Catalysis, 1996, 161(1):1-10. |
[20] | BEQUETTE B W, MAHAPATRA P. Model predictive control of integrated gasification combined cycle power plants[R]. Rensselaer Polytechnic Institute, 2010. |
[21] | SUN L, SMITH R. Rectisol wash process simulation and analysis[J]. Journal of Cleaner Production, 2013, 39:321-328. |
[22] | GATTI M, MARTELLI E, MARECHAL F, et al. Modeling, heat integration, and improved schemes of Rectisol®-based processes for CO2 capture[J]. Applied Thermal Engineering, 2014, 70(2):1123-1140. |
[23] | 天津市环境监测中心. 华能天津绿色煤电有限公司IGCC电厂工程竣工环境保护验收监测报告[EB/OL].[2017-03-27] . http://www.tjhb.gov.cn/root16/mechanism/development_mana/201603/P020160314594126798011.pdf. Tianjin Environment Monitoring Center. Monitoring report on environmental protection acceptance of IGCC power plant project of Huaneng Tianjin Green Coal & Electricity Co., Ltd.[EB/OL].[2017-03-27]. http://www.tjhb.gov.cn/root16/mechanism/development_mana/201603/P020160314594126798011.pdf. |
[24] | ZHANG J Y, MA L W, LI Z, et al. The impact of system configuration on material utilization in the coal-based polygeneration of methanol and electricity[J]. Energy, 2014, 75:136-145. |
[25] | 林汝谋, 金红光, 高林. 化工动力多联产系统评价准则问题研究综述[J]. 燃气轮机技术, 2012, 25(4):1-14. LIN R M, JIN H G, GAO L. Review on the evaluation criteria of chemicals and power colygeneration system[J]. Gas Turbine Technology, 2012, 25(4):1-14. |
[26] | LI X X, ZHOU H R, WANG Y, et al. Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier[J]. Energy, 2015, 87:605-614. |
[27] | YANG Q C, QIAN Y, ZHOU H R, et al. Development of a coupling oil shale retorting process of gas and solid heat carrier technologies[J]. Energy & Fuels, 2015, 29(9):6155-6163. |
[28] | XIANG D, YANG S Y, LIU X, et al. Techno-economic performance of the coal-to-olefins process with CCS[J]. Chemical Engineering Journal, 2014, 240:45-54. |
[29] | HOUSE K Z, HARVEY C F, AZIZ M J, et al. The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base[J]. Energy & Environmental Science, 2009, 2(2):193-205. |
[30] | 刘敬尧. 合成气为核心的能源化工系统的系统分析和生命周期评价[D]. 广州:华南理工大学, 2011. LIU J Y. System analysis and life cycle assessment of syngas-based energy-chemical complexes[D]. Guangzhou:South China University of Technology, 2011. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Mengya LIAN, Yingying TAN, Lin WANG, Feng CHEN, Yifei CAO. Heating performance of air preheated integrated ground water heat pump air-conditioning system [J]. CIESC Journal, 2023, 74(S1): 311-319. |
[3] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[4] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[5] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[6] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[7] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[8] | Yangguang LYU, Peipei ZUO, Zhengjin YANG, Tongwen XU. Triazine framework polymer membranes for methanol/n-hexane separation via organic solvent nanofiltration [J]. CIESC Journal, 2023, 74(4): 1598-1606. |
[9] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
[10] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[11] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[12] | Chenyang SHEN, Kaihang SUN, Yueping ZHANG, Changjun LIU. Research progresses on In2O3 and In2O3 supported metal catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2023, 74(1): 145-156. |
[13] | Wenhua DAI, Zhong XIN. Effect of Si-doped Cu/ZrO2 on the performance of catalysts for CO2 hydrogenation to methanol [J]. CIESC Journal, 2022, 73(8): 3586-3596. |
[14] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[15] | Jun ZHANG, Sheng HU, Jing GU, Haoran YUAN, Yong CHEN. Catalytic hydrogenation of furfural over magnetic polymetallic materials derived from electroplating sludge in methanol [J]. CIESC Journal, 2022, 73(7): 2996-3006. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 795
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 329
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||