CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 86-115.DOI: 10.11949/0438-1157.20200992
• Reviews and monographs • Previous Articles Next Articles
SHI Xiaofei(),JIANG Qinyuan(),LI Run,CUI Yiming,LIU Qingxiong,WEI Fei,ZHANG Rufan()
Received:
2020-07-23
Revised:
2020-09-21
Online:
2021-01-05
Published:
2021-01-05
Contact:
ZHANG Rufan
石晓飞(),姜沁源(),李润,崔一鸣,刘青雄,魏飞,张如范()
通讯作者:
张如范
作者简介:
石晓飞(1988—),女,博士后,基金资助:
CLC Number:
SHI Xiaofei, JIANG Qinyuan, LI Run, CUI Yiming, LIU Qingxiong, WEI Fei, ZHANG Rufan. Synthesis and structure control of horizontally aligned carbon nanotubes: progress and perspectives[J]. CIESC Journal, 2021, 72(1): 86-115.
石晓飞, 姜沁源, 李润, 崔一鸣, 刘青雄, 魏飞, 张如范. 碳纳米管水平阵列的结构控制生长:进展与展望[J]. 化工学报, 2021, 72(1): 86-115.
Add to citation manager EndNote|Ris|BibTeX
1 | Anantram M, Leonard F. Physics of carbon nanotube electronic devices[J]. Rep. Prog. Phys., 2006, 69(3): 507-561. |
2 | Dürkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Lett., 2004, 4(1): 35-39. |
3 | Javey A, Guo J, Wang Q, et al. Ballistic carbon nanotube field-effect transistors[J]. Nature, 2003, 424(6949): 654-657. |
4 | Zhang Z, Wang S, Ding L, et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage[J]. Nano Lett., 2008, 8(11): 3696-3701. |
5 | Pei T, Zhang P, Zhang Z, et al. Modularized construction of general integrated circuits on individual carbon nanotubes[J]. Nano Lett., 2014, 14(6): 3102-3109. |
6 | Kim S, Sun J, Choi Y, et al. Carbon nanotube ferroelectric random access memory cell based on omega-shaped ferroelectric gate[J]. Carbon, 2020, 162:195-200. |
7 | Liu Y, Wei N, Zeng Q, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Adv. Opt. Mater., 2016, 4(2): 238-245. |
8 | Hone J, Whitney M, Piskoti C, et al. Thermal conductivity of single-walled carbon nanotubes[J]. Phys. Rev. B, 1999, 59(4): R2514. |
9 | Berber S, Kwon Y K,Tománek D. Unusually high thermal conductivity of carbon nanotubes[J]. Phys. Rev. Lett., 2000, 84(20): 4613-4616. |
10 | Wang H D, Liu J H, Guo Z Y, et al. Thermal transport across the interface between a suspended single-walled carbon nanotube and air[J]. Nanoscale Microscale Thermophys. Eng., 2013, 17(4): 349-365. |
11 | Zhang R F, Wen Q, Qian W Z, et al. Superstrong ultralong carbon nanotubes for mechanical energy storage[J]. Adv. Mater., 2011, 23(30): 3387-3391. |
12 | Bai Y, Zhang R, Ye X, et al. Carbon nanotube bundles with tensile strength over 80 GPa[J]. Nat. Nanotechnol., 2018, 13(7): 589-595. |
13 | Li M, Kim I H, Jeong Y G. Cellulose acetate/multiwalled carbon nanotube nanocomposites with improved mechanical, thermal, and electrical properties[J]. J. Appl. Polym. Sci., 2010, 118(4): 2475-2481. |
14 | Chun K Y, Oh Y, Rho J, et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver[J]. Nat. Nanotechnol., 2010, 5(12): 853-857. |
15 | Suh D, Moon C M, Kim D, et al. Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits[J]. Adv. Mater., 2016, 28(33): 7220-7227. |
16 | Dresselhaus M S, Dresselhaus G, Saito R, et al. Raman spectroscopy of carbon nanotubes[J]. Phys. Rep., 2005, 409(2): 47-99. |
17 | Dresselhaus M S, Dresselhaus G, Jorio A. Unusal properties and structure of carbon nanotubes[J]. Annu. Rev. Mater. Res., 2004, 34(1): 247-278. |
18 | Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of graphene tubules based on C60[J]. Phys. Rev. B, 1992, 46(3): 1804-1811. |
19 | Tulevski G S, Franklin A D, Frank D, et al. Toward high-performance digital logic technology with carbon nanotubes[J]. ACS Nano, 2014, 8(9): 8730-8745. |
20 | Chen Z, Appenzeller J, Knoch J, et al. The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors[J]. Nano Lett., 2005, 5(7): 1497-1502. |
21 | Charlier J C. Defects in carbon nanotubes[J]. Acc. Chem. Res., 2002, 35(12): 1063-1069. |
22 | Lu A J, Pan B C. Nature of single vacancy in achiral carbon nanotubes[J]. Phys. Rev. Lett., 2004, 92(10): 105504. |
23 | Chico L, Crespi V H, Benedict L X, et al. Pure carbon nanoscale devices: nanotube heterojunctions[J]. Phys. Rev. Lett., 1996, 76(6): 971-974. |
24 | Franklin A D. The road to carbon nanotube transistors[J]. Nature, 2013, 498(7455): 443-444. |
25 | Hu Y, Kang L, Zhao Q, et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts[J]. Nat. Commun., 2015, 6(1): 6099. |
26 | Kang L, Hu Y, Zhong H, et al. Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface[J]. Nano Res., 2015, 8(11): 3694-3703. |
27 | Liu L, Han J, Xu L, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics[J]. Science, 2020, 368(6493): 850-856. |
28 | Cao Q, Han S J, Tulevski G S, et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics[J]. Nat. Nanotechnol., 2013, 8(3): 180-186. |
29 | He X, Gao W, Xie L, et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes[J]. Nat. Nanotechnol., 2016, 11(7): 633-638. |
30 | Léonard F. Crosstalk between nanotube devices: contact and channel effects[J]. Nanotechnology, 2006, 17(9): 2381-2385. |
31 | Zhang J, Lin A, Patil N, et al. Carbon nanotube robust digital VLSI[J]. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2012, 31(4): 453-471. |
32 | Page A J, Ohta Y, Okamoto Y, et al. Defect healing during dingle-walled carbon nanotube growth: a density-functional tight-binding molecular dynamics investigation[J]. J. Phys. Chem. C, 2009, 113(47): 20198-20207. |
33 | Yuan Q, Xu Z, Yakobson B I, et al. Efficient defect healing in catalytic carbon nanotube growth[J]. Phys. Rev. Lett., 2012, 108(24): 245505. |
34 | Xu Z, Yan T, Ding F. Atomistic simulation of the growth of defect-free carbon nanotubes[J]. Chem. Sci., 2015, 6(8): 4704-4711. |
35 | Ding F. Theoretical study of the stability of defects in single-walled carbon nanotubes as a function of their distance from the nanotube end[J]. Phys. Rev. B, 2005, 72(24): 245409. |
36 | Ding F, Rosén A, Bolton K. The role of the catalytic particle temperature gradient for SWNT growth from small particles[J]. Chem. Phys. Lett., 2004, 393(4): 309-313. |
37 | Ago H, Nakamura Y, Ogawa Y, et al. Combinatorial catalyst approach for high-density growth of horizontally aligned single-walled carbon nanotubes on sapphire[J]. Carbon, 2011, 49(1): 176-186. |
38 | Huang S, Woodson M, Smalley R, et al. Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process[J]. Nano Lett., 2004, 4(6): 1025-1028. |
39 | Han S, Liu X, Zhou C. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire[J]. J. Am. Chem. Soc., 2005, 127(15): 5294-5295. |
40 | Hata K, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306(5700): 1362-1364. |
41 | Zhang S, Tong L, Hu Y, et al. Diameter-specific growth of semiconducting SWNT arrays using uniform Mo2C solid catalyst[J]. J. Am. Chem. Soc., 2015, 137(28): 8904-8907. |
42 | Zhao Y, Jiao Q, Li C, et al. Catalytic synthesis of carbon nanostructures using layered double hydroxides as catalyst precursors[J]. Carbon, 2007, 45(11): 2159-2163. |
43 | Homma Y, Liu H, Takagi D, et al. Single-walled carbon nanotube growth with non-iron-group “catalysts” by chemical vapor deposition[J]. Nano Res., 2009, 2(10): 793-799. |
44 | He M, Liu B, Chernov A I, et al. Growth mechanism of single-walled carbon nanotubes on iron-copper catalyst and chirality studies by electron diffraction[J]. Chem. Mater., 2012, 24(10): 1796-1801. |
45 | Qin X, Peng F, Yang F, et al. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports[J]. Nano Lett., 2014, 14(2): 512-517. |
46 | Huang L, Cui X, White B, et al. Long and oriented single-walled carbon nanotubes grown by ethanol chemical vapor deposition[J]. J. Phys. Chem. B, 2004, 108(42): 16451-16456. |
47 | Yao Y, Dai X, Liu R, et al. Tuning the diameter of single-walled carbon nanotubes by temperature-mediated chemical vapor deposition[J]. J. Phys. Chem. C, 2009, 113(30): 13051-13059. |
48 | Wen Q, Zhang R, Qian W, et al. Growing 20 cm long DWNTs/TWNTs at a rapid growth rate of 80-90 μm/s[J]. Chem. Mater., 2010, 22(4): 1294-1296. |
49 | Zhang R, Zhang Y, Zhang Q, et al. Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution[J]. ACS Nano, 2013, 7(7): 6156-6161. |
50 | Zhang R F, Ning Z, Zhang Y, et al. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions[J]. Nat. Nanotechnol., 2013, 8(12): 912-916. |
51 | Zhu Z, Wei N, Cheng W, et al. Rate-selected growth of ultrapure semiconducting carbon nanotube arrays[J]. Nat. Commun., 2019, 10(1): 4467. |
52 | Guo W, Zhong W, Dai Y, et al. Coupled defect-size effects on interlayer friction in multiwalled carbon nanotubes[J]. Phys. Rev. B, 2005, 72(7): 075409. |
53 | He M, Zhang S, Wu Q, et al. Designing catalysts for chirality-selective synthesis of single-walled carbon nanotubes: past success and future opportunity[J]. Adv. Mater., 2019, 31(9): 1800805. |
54 | Yang F, Wang X, Li M, et al. Templated synthesis of single-walled carbon nanotubes with specific structure[J]. Acc. Chem. Res., 2016, 49(4): 606-615. |
55 | Yang F, Wang M, Zhang D, et al. Chirality pure carbon nanotubes: growth, sorting, and characterization[J]. Chem. Rev., 2020, 120(5): 2693-2758. |
56 | Yang F, Wang X, Zhang D, et al. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510(7506): 522-524. |
57 | Chiang W H, Sankaran R M. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles[J]. Nat. Mater., 2009, 8(11): 882-886. |
58 | Loebick C Z, Derrouiche S, Marinkovic N, et al. Effect of manganese addition to the Co-MCM-41 catalyst in the selective synthesis of single wall carbon nanotubes[J]. J. Phys. Chem. C, 2009, 113(52): 21611-21620. |
59 | Loebick C Z, Derrouiche S, Fang F, et al. Effect of chromium addition to the Co-MCM-41 catalyst in the synthesis of single wall carbon nanotubes[J]. Appl. Catal. A: Gen., 2009, 368(1): 40-49. |
60 | Li X, Tu X, Zaric S, et al. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection[J]. J. Am. Chem. Soc., 2007, 129(51): 15770-15771. |
61 | Yang F, Zhao H, Wang X, et al. Atomic scale stability of tungsten-cobalt intermetallic nanocrystals in reactive environment at high temperature[J]. J. Am. Chem. Soc., 2019, 141(14): 5871-5879. |
62 | Yang F, Wang X, Zhang D, et al. Growing zigzag (16,0) carbon nanotubes with structure-defined catalysts[J]. J. Am. Chem. Soc., 2015, 137(27): 8688-8691. |
63 | Fouquet M, Bayer B C, Esconjauregui S, et al. Effect of catalyst pretreatment on chirality-selective growth of single-walled carbon nanotubes[J]. J. Phys. Chem. C, 2014, 118(11): 5773-5781. |
64 | Ding F, Harutyunyan A R,Yakobson B I. Dislocation theory of chirality-controlled nanotube growth[J]. Proc. Natl. Acad. Sci., 2009, 106(8): 2506. |
65 | Artyukhov V I, Penev E S,Yakobson B I. Why nanotubes grow chiral[J]. Nat. Commun., 2014, 5(1): 1-6. |
66 | Zhang S, Kang L, Wang X, et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts[J]. Nature, 2017, 543(7644): 234-238. |
67 | He M, Wang X, Zhang S, et al. Growth kinetics of single-walled carbon nanotubes with a (2n, n) chirality selection[J]. Sci. Adv., 2019, 5(12): eaav9668. |
68 | Zhang S, Wang X, Yao F, et al. Controllable growth of (n, n-1) family of semiconducting carbon nanotubes[J]. Chem, 2019, 5(5): 1182-1193. |
69 | Yao Y, Feng C, Zhang J, et al. “Cloning” of single-walled carbon nanotubes via open-end growth mechanism[J]. Nano Lett., 2009, 9(4): 1673-1677. |
70 | Yu X, Zhang J, Choi W, et al. Cap formation engineering: from opened C60 to single-walled carbon nanotubes[J]. Nano Lett., 2010, 10(9): 3343-3349. |
71 | Liu J, Wang C, Tu X, et al. Chirality-controlled synthesis of single-wall carbon nanotubes using vapour-phase epitaxy[J]. Nat. Commun., 2012, 3(1): 1199. |
72 | Tomada J, Dienel T, Hampel F, et al. Combinatorial design of molecular seeds for chirality-controlled synthesis of single-walled carbon nanotubes[J]. Nat. Commun., 2019, 10(1): 3278. |
73 | Hu Y, Chen Y, Li P, et al. Sorting out semiconducting single-walled carbon nanotube arrays by washing off metallic tubes using SDS aqueous solution[J]. Small, 2013, 9(8): 1306-1311. |
74 | Ghosh S, Bachilo S M,Weisman R B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation[J]. Nat. Nanotechnol., 2010, 5(6): 443-450. |
75 | Tu X, Manohar S, Jagota A, et al. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes[J]. Nature, 2009, 460(7252): 250-253. |
76 | Tu X, Hight Walker A R, Khripin C Y, et al. Evolution of DNA sequences toward recognition of metallic armchair carbon nanotubes[J]. J. Am. Chem. Soc., 2011, 133(33): 12998-13001. |
77 | Ao G, Khripin C Y, Zheng M. DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems[J]. J. Am. Chem. Soc., 2014, 136(29): 10383-10392. |
78 | Nish A, Hwang J Y, Doig J, et al. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers[J]. Nat. Nanotechnol., 2007, 2(10): 640-646. |
79 | Stürzl N, Hennrich F, Lebedkin S, et al. Near monochiral single-walled carbon nanotube dispersions in organic solvents[J]. J. Phys. Chem. C, 2009, 113(33): 14628-14632. |
80 | Zhou W, Zhan S, Ding L, et al. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant[J]. J. Am. Chem. Soc., 2012, 134(34): 14019-14026. |
81 | Liao A, Alizadegan R, Ong Z Y, et al. Thermal dissipation and variability in electrical breakdown of carbon nanotube devices[J]. Phys. Rev. B, 2010, 82(20): 205406. |
82 | Jin S H, Dunham S N, Song J, et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes[J]. Nat. Nanotechnol., 2013, 8(5): 347-355. |
83 | Li S, Liu C, Hou P X, et al. Enrichment of semiconducting single-walled carbon nanotubes by carbothermic reaction for use in all-nanotube field effect transistors[J]. ACS Nano, 2012, 6(11): 9657-9661. |
84 | Zhang G, Qi P, Wang X, et al. Selective etching of metallic carbon nanotubes by gas-phase reaction[J]. Science, 2006, 314(5801): 974-977. |
85 | Zhang H, Liu Y, Cao L, et al. A facile, low-cost, and scalable method of selective etching of semiconducting single-walled carbon nanotubes by a gas reaction[J]. Adv. Mater., 2009, 21(7): 813-816. |
86 | Hassanien A, Tokumoto M, Umek P, et al. Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma[J]. Nanotechnology, 2005, 16(2): 278-281. |
87 | Li P, Zhang J. Sorting out semiconducting single-walled carbon nanotube arrays by preferential destruction of metallic tubes using water[J]. J. Mater. Chem., 2011, 21(32): 11815-11821. |
88 | Wang Z, Zhao Q, Tong L, et al. Investigation of etching behavior of single-walled carbon nanotubes using different etchants[J]. J. Phys. Chem. C, 2017, 121(49): 27655-27663. |
89 | Zhang R F, Xie H, Zhang Y, et al. The reason for the low density of horizontally aligned ultralong carbon nanotube arrays[J]. Carbon, 2013, 52: 232-238. |
90 | Zhou W, Ding L, Yang S, et al. Synthesis of high-density, large-diameter, and aligned single-walled carbon nanotubes by multiple-cycle growth methods[J]. ACS Nano, 2011, 5(5): 3849-3857. |
91 | Hong S W, Banks T, Rogers J A. Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz[J]. Adv. Mater., 2010, 22(16): 1826-1830. |
92 | He M, Duan X, Wang X, et al. Iron catalysts reactivation for efficient CVD growth of SWNT with base-growth mode on surface[J]. J. Phys. Chem. B, 2004, 108(34): 12665-12668. |
93 | Li J, Liu K, Laing S, et al. Growth of high-density-aligned and semiconducting-enriched single-walled carbon nanotubes: decoupling the conflict between density and selectivity[J]. ACS Nano, 2014, 8(1): 554-562. |
94 | Wu B, Geng D, Guo Y, et al. Ultrahigh density modulation of aligned single-walled carbon nanotube arrays[J]. Nano Res., 2011, 4(10): 931-937. |
95 | McNicholas T P, Ding L, Yuan D, et al. Density enhancement of aligned single-walled carbon nanotube thin films on quartz substrates by sulfur-assisted synthesis[J]. Nano Lett., 2009, 9(10): 3646-3650. |
96 | Xie H, Zhang R, Zhang Y, et al. Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres[J]. Carbon, 2013, 52: 535-540. |
97 | Xie H, Zhang R, Zhang Y, et al. Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes[J]. Chem. Commum., 2014, 50(76): 11158-11161. |
98 | Xie H, Zhang R, Zhang Y, et al. Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays[J]. Carbon, 2016, 98: 157-161. |
99 | Patil N, Lin A, Myers E R, et al. Wafer-scale growth and transfer of aligned single-walled carbon nanotubes[J]. IEEE Trans. Nanotechnol., 2009, 8(4): 498-504. |
100 | Aasmundtveit K E, Roy A, Ta B Q. Carbon nanotubes directly integrated in CMOS by local synthesis-towards a wafer-level process[C]//2018 IEEE 13th Nanotechnology Materials and Devices Conference. Portland, 2018: 1-5. |
101 | Derenskyi V, Gomulya W, Talsma W, et al. On-chip chemical self-assembly of semiconducting single-walled carbon nanotubes (SWNTs): toward robust and scale invariant SWNTs transistors[J]. Adv. Mater., 2017, 29(23): 1606757. |
102 | Wang C, Ryu K, De Arco L G, et al. Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer[J]. Nano Res., 2010, 3(12): 831-842. |
103 | Si J, Zhong D, Xu H, et al. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors[J]. ACS Nano, 2018, 12(1): 627-634. |
104 | Han S J, Tang J, Kumar B, et al. High-speed logic integrated circuits with solution-processed self-assembled carbon nanotubes[J]. Nat. Nanotechnol., 2017, 12(9): 861-865. |
105 | Dong G, Zhao J, Shen L, et al. Large-area and highly uniform carbon nanotube film for high-performance thin film transistors[J]. Nano Res., 2018, 11(8): 4356-4367. |
106 | Bishop M D, Hills G, Srimani T, et al. Fabrication of carbon nanotube field-effect transistors in commercial silicon manufacturing facilities[J]. Nat. Electron., 2020, 3: 492-501. |
107 | Kang L, Zhang S, Li Q, et al. Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/μm using ethanol/methane chemical vapor deposition[J]. J. Am. Chem. Soc., 2016, 138(21): 6727-6730. |
108 | Zhang R, Zhang Y, Xie H, et al. Controlled synthesis and property of horizontally aligned carbon nanotubes[J]. Sci. Sin. Chim., 2015, 45(10): 979. |
109 | Dittmer S, Svensson J, Campbell E E B. Electric field aligned growth of single-walled carbon nanotubes[J]. Current Applied Physics, 2004, 6(4): 595-598. |
110 | Joselevich E, Lieber C M. Vectorial growth of metallic and semiconducting single-wall carbon nanotube[J]. Nano Lett., 2002, 2(10): 1137-1141. |
111 | Wei S, Jie S, Zhao Z, et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches[J]. Science, 2020, 368: 874-877. |
112 | Zhao M, Chen Y, Wanf K, et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors[J]. Science, 2020, 368: 878-881. |
113 | Selmani S, Schipper D J. Orientation control of molecularly functionalized surfaces applied to the simultaneous alignment and sorting of carbon nanotubes[J]. Angew. Chem. Int. Ed. Engl., 2018, 57(9): 2399-2403. |
114 | Zhang J, Liu S, Nshimiyimana J P, et al. Wafer-scale fabrication of suspended single-walled carbon nanotube arrays by silver liquid dynamics[J]. Small, 2017, 13(40): 1701218. |
115 | Hossain M M, Islam M A, Shima H, et al. Alignment of carbon nanotubes in carbon nanotube fibers through nanoparticles: a route for controlling mechanical and electrical properties[J]. ACS Appl. Mater. Interfaces, 2017, 9(6): 5530-5542. |
116 | Ali J, Jing G, Qian W, et al. Ballistic carbon nanotube field-effect transistors[J]. Nature, 2003, 424: 654-657. |
117 | Zhang Z, Liang X, Wang S, et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits[J]. Nano Lett., 2007, 7(12): 3603-3607. |
118 | Cao Q, Tersoff J, Farmer D B, et al. Carbon nanotube transistors scaled to a 40-nanometer footprint[J]. Science, 2017, 356: 1369-1372. |
119 | Qiu C, Zhang Z, Xiao M, et al. Scaling carbonnanotube complementary transistors to 5-nm gate lengths[J]. Science, 2017, 355: 271-276. |
120 | Tang J, Cao Q, Tulevski G, et al. Flexible CMOS integrated circuits based on carbon nanotubes with sub-10 ns stage delays[J]. Nat. Electron., 2018, 1(3): 191-196. |
121 | Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer[J]. Nature, 2013, 501(7468): 526-530. |
122 | Hills G, Lau C, Wright A, et al. Modern microprocessor built from complementary carbon nanotube transistors[J]. Nature, 2019, 572(7771): 595-602. |
123 | Wang Y, Fang L, Xiang L, et al. On-chip thermionic electron emitter arrays based on horizontally aligned single-walled carbon nanotubes[J]. IEEE Trans. Electron Devices, 2019, 66(2): 1069-1074. |
124 | Wei N, Liu Y, Xie H, et al. Carbon nanotube light sensors with linear dynamic range of over 120 dB[J]. Appl. Phys. Lett., 2014, 105(7): 073107. |
125 | Liu Y, Wei N, Zeng Q, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Adv. Opt. Mater., 2016, 4(2): 238-245. |
126 | Liu Y, Wei N, Zhao Q, et al. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes[J]. Nanoscale, 2015, 7(15): 6805-6812. |
127 | Ertugrul C, Fatih D, Coskun K. Aligned carbon nanotubes as polarization-sensitive, molecular near-field detectors[J]. Proc. Natl. Acad. Sci., 2009, 106(8): 2495-2499. |
128 | Xiang R, Inoue T, Zheng Y, et al. One-dimensional van der Waals heterostructures[J]. Science, 2020, 367: 537-542. |
129 | Liao Y, Jiang H, Wei N, et al. Direct synthesis of colorful single-walled carbon nanotube thin films[J]. J. Am. Chem. Soc., 2018, 140(31): 9797-9800. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[3] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[4] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[5] | Yuming CHEN, Wei LI, Xiang YAN, Jingdai WANG, Yongrong YANG. Research progress on regulation of aggregation structure for nascent polyethylene [J]. CIESC Journal, 2023, 74(2): 487-499. |
[6] | Tianhang ZHOU, Xingying LAN, Chunming XU. Artificial intelligence for accelerating polymer design: recent advances and future perspectives [J]. CIESC Journal, 2023, 74(1): 14-28. |
[7] | Hao ZHANG, Ziyue WANG, Yujie CHENG, Xiaohui HE, Hongbing JI. Progress in the mass production of single-atom catalysts [J]. CIESC Journal, 2023, 74(1): 276-289. |
[8] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[9] | Xue’an LIU, Liyi TANG, Jian QIN, Dajiang TANG, Zhangfa TONG, Huiying QU. Preparation of carbon nanotube bridged porous carbon by Ni/Co-ZIF-8 pyrolysis and its application to supercapacitors [J]. CIESC Journal, 2022, 73(7): 3287-3297. |
[10] | Zhe SUN, Huaqiang JIN, Kang LI, Jiangping GU, Yuejin HUANG, Xi SHEN. Fault diagnosis method of refrigeration and air-conditioning system based on digitized knowledge representation [J]. CIESC Journal, 2022, 73(7): 3131-3144. |
[11] | Chuyue CAI, Xiaoming FANG, Zhengguo ZHANG, Ziye LING. Enhancing heat dissipation performance of paraffin/silicone rubber phase change thermal pad by introducing carbon nanotubes [J]. CIESC Journal, 2022, 73(7): 2874-2884. |
[12] | Xingda SHI, Huayan CHEN, Yanan GE, Chunrui WU, Hongyou JIA, Xiaolong LYU. Construction of three-dimensional network by modified MWCNT and AlN fillings in PVDF to improve the thermal conductivity [J]. CIESC Journal, 2022, 73(5): 2262-2269. |
[13] | Xue HAN, Shengwang GAO, Guoying WANG, Xunfeng XIA. Research of enhanced carbon nanotubes activated peroxymonosulfate by cerium doping [J]. CIESC Journal, 2022, 73(4): 1743-1753. |
[14] | Yuzhe LIU, Chengcai LI, Lin LI, Shaohui WANG, Peihui LIU, Tonghua WANG. Structure-property relationship between microstructure of activated carbon and supercapacitor performance [J]. CIESC Journal, 2022, 73(4): 1807-1816. |
[15] | Qi WANG, Kuo FANG, Conghui HE, Kaijun WANG. Recent development and future challenges of flow-electrode capacitive deionization [J]. CIESC Journal, 2022, 73(3): 975-989. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||