CIESC Journal ›› 2017, Vol. 68 ›› Issue (10): 3770-3778.DOI: 10.11949/j.issn.0438-1157.20170528
Previous Articles Next Articles
HUANG Lei, ZHANG Yuming, ZHANG Liang, ZHANG Xiaochen, SUN Guogang
Received:
2017-05-02
Revised:
2017-08-03
Online:
2017-10-05
Published:
2017-10-05
Supported by:
supported by the National Natural Science Foundation of China(21406264), the National Basic Research Program of China (2014CB744304) and the Science Foundation of China University of Petroleum (2462013YJRC021, C201606).
黄雷, 张玉明, 张亮, 张晓晨, 孙国刚
通讯作者:
张玉明,ymzhcup@163.com
基金资助:
国家自然科学基金项目(21406264);国家重点基础研究发展计划项目(2014CB744304);中国石油大学(北京)科研基金项目(2462013YJRC021,C201606)。
CLC Number:
HUANG Lei, ZHANG Yuming, ZHANG Liang, ZHANG Xiaochen, SUN Guogang. Effects of shale ash and FCC catalyst on adjusting secondary reaction of volatiles in oil shale pyrolysis[J]. CIESC Journal, 2017, 68(10): 3770-3778.
黄雷, 张玉明, 张亮, 张晓晨, 孙国刚. 页岩灰和FCC催化剂调控油页岩热解产物二次反应特性[J]. 化工学报, 2017, 68(10): 3770-3778.
[1] | AKASH B A, JABER J O. Characterization of shale oil as compared to crude oil and some refined petroleum products[J]. Energy Sources, 2003, 25(12):1171-1182. |
[2] | GWYN J E. Oil from shale as a viable replacement of depleted crude reserves:processes and challenges[J]. Fuel Processing Technology, 2001, 70(1):27-40. |
[3] | 刘招君, 董清水, 叶松青, 等. 中国油页岩资源现状[J]. 吉林大学学报(地球科学版), 2006, 36(6):869-876. LIU Z J, DONG Q S, DONG S Q, et al. The situation of oil shale resources in China[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6):869-876. |
[4] | NA J G, IM C H, CHUNG S H, et al. Effect of oil shale retorting temperature on shale oil yield and properties[J]. Fuel, 2012, 95(1):131-135. |
[5] | YUE C T, LIU Y, MA Y, et al. Influence of retorting conditions on the pyrolysis of Yaojie oil shale[J]. Oil Shale, 2014, 31(1):66-78. |
[6] | WILLIAMS P T, CHISHTI H M. Influence of residence time and catalyst regeneration on the pyrolysis-zeolite catalysis of oil shale[J]. Journal of Analytical and Applied Pyrolysis, 2001, 60(2):187-203. |
[7] | LAI D G, CHEN Z H, LIN L X, et al. Secondary cracking and upgrading of shale oil from pyrolyzing oil shale over shale ash[J]. Energy & Fuels, 2015, 29(4):2219-2226. |
[8] | ZHANG Y, HAN Z N, WU H, et al. Interactive matching between the temperature profile and secondary reactions of oil Shale pyrolysis[J]. Energy & Fuels, 2016, 30(4):2865-2873. |
[9] | 刘振宇. 煤化学的前沿与挑战:结构与反应[J]. 中国科学:化学, 2014, 44(9):1431-1438. LIU Z Y. The frontier and challenge of coal chemistry:structure and reaction[J]. Scientia Sinica Chimica, 2014, 44(9):1431-1438. |
[10] | DIECKMANN V, SCHENK H J, HORSFIELD B. Assessing the overlap of primary and secondary reactions by closed-versus open-system pyrolysis of marine kerogens[J]. Journal of Analytical and Applied Pyrolysis, 2000, 56(1):33-46. |
[11] | YAN J W, JIANG X M, HAN X X. Study on the characteristics of the oil shale and shale char mixture pyrolysis[J]. Energy & Fuels, 2009, 23(12):5792-5797. |
[12] | DUNG N V, WALL G C, KASTL G. Continuous fluidized bed retorting of condor and Stuart oil shales in a 150 mm diameter reactor[J]. Fuel, 1987, 66(3):372-376. |
[13] | 刘晓生. 页岩灰在油页岩固体热载体流态化干馏中催化作用试验分析[J]. 广东化工, 2013, 40(4):38-39. LIU X S. Experiment analysis of the catalysis function of shale ash in fluidized retorting of oil shale solid heat carrier[J]. Guangdong Chemical Industry, 2013, 40(4):38-39. |
[14] | CARTER S D, CITIROGLU M, GALLACHER J, et al. Secondary coking and cracking of shale oil vapor from pyrolysis or hydropyrolysis of a Kentucky Cleveland oil shale in a two-stage reactor[J]. Fuel, 1994, 73(9):1455-1458. |
[15] | FAINBERG V, GARBAR A, HETSRONI G. Secondary pyrolysis of the products of the thermal destruction of high-sulfur oil shale[J]. Energy & Fuels, 1997, 11(4):915-919. |
[16] | WILLIAMS P T, CHISHTI H M. Two-stage pyrolysis of oil shale using a zeolite catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2000, 55(2):217-234. |
[17] | MINKOVA V, RAZVIGOROVA M, BJORNBOM E, et al. Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass[J]. Fuel Processing Technology, 2001, 70(1):53-61. |
[18] | HOSOKAI S, KUMABE K, OHSHITA M, et al. Mechanism of decomposition of aromatics over charcoal and necessary condition for maintaining its activity[J]. Fuel, 2008, 87(13/14):2914-2922. |
[19] | HOSOKAI S, HAYASHI J, SHIMADA T, et al. Spontaneous generation of tar decomposition promoter in a biomass steam reformer[J]. Chemical Engineering Research and Design, 2005, 83(9):1093-1102. |
[20] | GERGOVA K, PETROV N, ESER S. Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis[J]. Carbon, 1994, 32(4):693-702. |
[21] | XIONG R, DONG L, YU J, et al. Fundamentals of coal topping gasification:characterization of pyrolysis topping in a fluidized bed reactor[J]. Fuel Processing Technology, 2010, 91(8):810-817. |
[22] | JIA Y B, HUANG J J, WANG Y. Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed[J]. Energy & Fuels, 2004, 18(6):1625-1632. |
[23] | CALKINS W H, TYLER R J. Coal flash pyrolysis(Ⅱ):Polymethylene compounds in low temperature flash pyrolysis tars[J]. Fuel, 1984, 63(8):1119-1124. |
[24] | XU W C, TOMITA A. Effect of temperature on the flash pyrolysis of various coals[J]. Fuel, 1987, 66(5):632-636. |
[25] | ALAYA M N, GIRFIS B S, MOURAD W E. Activated carbon from some agricultural wastes under action of one-step steam pyrolysis[J]. Journal of Porous Materials, 2000, 7(4):509-517. |
[26] | NAIK D, KARTHIK V, KUMAR V. Kinetic modeling for catalytic cracking of pyrolysis oils with VGO in a FCC unit[J]. Chemical Engineering Science, 2017, 170:790-798. |
[27] | RUBEL A M, RIMMER S M, KEOGH R, et al. Effect of process solids on secondary reactions during oil shale retorting[J]. Fuel, 1991, 70(11):1352-1356. |
[28] | 柏静儒, 林卫生, 潘朔, 等. 油页岩低温热解过程中轻质气体的析出特性[J]. 化工学报, 2015, 66(3):1104-1110. BAI J R, LIN W S, PAN S, et al. Characteristics of light gases evolution during oil shale pyrolysis[J]. CIESC Journal, 2015, 66(3):1104-1110. |
[29] | 王世宇. 低温煤焦油化学破乳脱水机理的基础研究[D]. 北京:煤炭科学研究总院, 2010. WANG S Y. Preliminary study on the mechanism of water-oil separation by chemical demulsification of low-temperature coal tar[D]. Beijing:China Coal Research Institute, 2010. |
[30] | 齐伟, 王世宇. 中低温煤焦油模拟蒸馏曲线解析[J]. 洁净煤技术, 2014, 20(4):65-67. QI W, WANG S Y. Simulated distillation curve of medium and low temperature coal tar[J]. Clean Coal Technology, 2014, 20(4):65-67. |
[31] | 王擎, 许祥成, 迟铭书, 等. 干酪根组成结构及其热解生油特性的红外光谱研究[J]. 燃料化学学报, 2015, 43(10):1158-1166. WANG Q, XU X C, CHI M S, et al. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation characteristics[J]. Journal of Fuel Chemistry & Technology, 2015, 43(10):1158-1166. |
[32] | FOOKES C J R, DUFFY G J, UDAJA P, et al. Mechanisms of thermal alteration of shale oils[J]. Fuel, 1990, 69(9):1142-1144. |
[33] | CHEN B, HAN X X, LI Q Y, et al. Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis[J]. Energy Conversion and Management, 2016, 127:284-292. |
[34] | 秦匡宗, 吴肖令. 抚顺油页岩热解成烃机理——固体13C核磁波谱技术的应用[J]. 石油学报, 1990, 6(1):36-44. QIN K Z, WU X L. Hydrocarbon formation mechanism of Fushun oil shale during pyrolysis-a study with solid state 13C NMR spectroscopic techniques[J]. Acta Petrolei Sinica, 1990, 6(1):36-44. |
[1] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[2] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[3] | Lei HUANG, Lingxue KONG, Jin BAI, Huaizhu LI, Zhenxing GUO, Zongqing BAI, Ping LI, Wen LI. Effect of oil shale addition on ash fusion behavior of Zhundong high-sodium coal [J]. CIESC Journal, 2023, 74(5): 2123-2135. |
[4] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[5] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[6] | Na ZHANG, Helin PAN, Bo NIU, Yayun ZHANG, Donghui LONG. Density functional theory study on thermal cracking reaction mechanism of phenolic resin [J]. CIESC Journal, 2023, 74(2): 843-860. |
[7] | Zeguang HAO, Qian ZHANG, Zenglin GAO, Hongwen ZHANG, Zeyu PENG, Kai YANG, Litong LIANG, Wei HUANG. Study on synergistic effect of biomass and FCC slurry co-pyrolysis [J]. CIESC Journal, 2022, 73(9): 4070-4078. |
[8] | Jian SHAO, Junzong FENG, Fengqi LIU, Yonggang JIANG, Liangjun LI, Jian FENG. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres [J]. CIESC Journal, 2022, 73(9): 3787-3801. |
[9] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[10] | Haoyu XIAO, Haiping YANG, Xiong ZHANG, Yingquan CHEN, Xianhua WANG, Hanping CHEN. Recent progress of catalytic pyrolysis of plastics to produce high value-added products [J]. CIESC Journal, 2022, 73(8): 3461-3471. |
[11] | Kaihong TANG, Xiaofeng HE, Guiqiu XU, Yang YU, Xiaofeng LIU, Tiejun GE, Ailing ZHANG. Review on combustion behavior and flame retardant research of phenolic foams [J]. CIESC Journal, 2022, 73(8): 3483-3500. |
[12] | Yong’an CHEN, Anning ZHOU, Yunlong LI, Zhiwei SHI, Xinfu HE, Weihong JIAO. Preparation and coal pyrolysis performance of magnetic MgFe2O4 and its core-shell catalysts [J]. CIESC Journal, 2022, 73(7): 3026-3037. |
[13] | Yugong CHEN, Hao CHEN, Yaosong HUANG. Study on pyrolysis mechanism of hexamethyldisiloxane using reactive molecular dynamics simulations [J]. CIESC Journal, 2022, 73(7): 2844-2857. |
[14] | Mo ZHENG, Xiaoxia LI. Revealing reaction compromise in competition for volatile radicals during coal pryolysis via ReaxFF MD simulation [J]. CIESC Journal, 2022, 73(6): 2732-2741. |
[15] | Guanyi CHEN, Tujun TONG, Rui LI, Yanshan WANG, Beibei YAN, Ning LI, Li'an HOU. Influence of pyrolysis time on sludge-derived biochar performance for peroxymonosulfate activation [J]. CIESC Journal, 2022, 73(5): 2111-2119. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 616
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 443
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||