[1] |
CLEMOW L M, JACKSON W R, CHAFFEE A L, et al. Chapter 15:Understanding brown coal-water interactions to reduce carbon dioxide emissions[M]//Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century. Springer, 2002:203-216.
|
[2] |
郭彩应. 一种活性煤焦的钝化工艺和钝化系统:20091003089. 6[P]. 2010-07-21. GUO C Y. Passivation process and passivation system of active coke:20091003089. 6[P]. 2010-07-21.
|
[3] |
赵旭, 谭永鹏, 詹仲福, 等. 一种褐煤干燥成型煤或半焦钝化精制的新工艺:201310129039. 9[P]. 2014-10-15. ZHAO X, TAN Y P, ZHAN Z F, et al. New technology for passivation refining of dried formed coal or semi coke of lignite:201310129039.9[P]. 2014-10-15.
|
[4] |
ZHAO H, YU J, LIU J, et al. Experimental study on the self-heating characteristics of Indonesian lignite during low temperature oxidation[J]. Fuel, 2015, 150:55-63.
|
[5] |
LI B, CHEN G, ZHANG H, et al. Development of non-isothermal TGA-DSC for kinetics analysis of low temperature coal oxidation prior to ignition[J]. Fuel, 2014, 118:385-391.
|
[6] |
CHOI H, THIRUPPATHIRAJA C, KIM S, et al. Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal[J]. Fuel Processing Technology, 2011, 92(10):2005-2010.
|
[7] |
CHRISTIE G B Y, MAINWARING D E. Oxidative and immersional heating on low rank coal surfaces[J]. Fuel, 1992, 71(4):443-447.
|
[8] |
刘丽华, 初茉, 党彤彤, 等. 吸湿预氧化对提质褐煤自燃倾向性的影响[J]. 燃料化学学报, 2016, 44(10):1153-1159. LIU L H, CHU M, DANG T T, et al. Effect of moisture adsorption and air pre-oxidation on spontaneous combustion liability of upgraded lignite[J]. Journal of Fuel Chemistry and Technology, 2016, 44(10):1153-1159.
|
[9] |
邓军, 赵婧昱, 张嬿妮, 等. 陕西侏罗纪煤二次氧化自燃特性试验研究[J]. 中国安全科学学报, 2014, 24(1):34-40. DENG J, ZHAO J Y, ZHANG Y N, et al. Experimental study on spontaneous combustion characteristics of secondary oxidation of Jurassic coal[J]. China Safety Science Journal, 2014, 24(1):34-40.
|
[10] |
张辛亥, 李青蔚. 预氧化煤自燃特性试验研究[J]. 煤炭科学技术, 2014, 42(11):37-40. ZHANG X H, LI Q W. Experiment study on spontaneous combustion characteristics of pre-oxidized coal[J]. Coal Science and Technology, 2014, 42(11):37-40.
|
[11] |
SHAO Y, JIAN Z L, JIE Z, et al. Effect of microwave irradiation on the propensity for spontaneous combustion of Inner Mongolia lignite[J]. Journal of Loss Prevention in the Process Industries, 2016, 44(11):390-396.
|
[12] |
王德明. 煤氧化动力学理论及应用[M]. 北京:科学出版社, 2012:13-37, 53-61, 184-185, 216-223. WANG D M. The Coal Oxidation Dynamics:Theory and Application[M]. Beijing:Science Press, 2012:13-25,53-61, 184-185, 216-223.
|
[13] |
胡争国, 仲晓星, 王德明, 等. 煤自燃倾向性鉴定方法不合理性分析[J]. 煤炭科学技术, 2008, 36(8):49-52. HU Z G, ZHONG X X, WANG D M, et al. Analysis on the irrationality of evaluation method for coal spontaneous combustion tendentiousness[J]. Coal Science and Technology, 2008, 36(8):49-52.
|
[14] |
徐永亮, 王兰云, 宋志鹏, 等. 基于交叉点法的煤自燃低温氧化阶段特性和关键参数[J]. 煤炭学报, 2017, 42(4):935-941. XU Y L, WANG L Y, SONG Z P, et al. Characteristics and critical parameters of coal spontaneous combustion at low temperature stage based on CPT method[J]. Journal of China Coal Society, 2017, 42(4):935-941.
|
[15] |
OGUNSOLA O I, MIKULA R J. A study of spontaneous combustion characteristics of Nigerian coals[J]. Fuel, 1991, 70(2):258-261.
|
[16] |
王寅, 王海晖. 基于交叉点温度法煤自燃倾向性评定指标的物理内涵[J]. 煤炭学报, 2015, 40(2):377-382. WANG Y, WANG H H. Physical nature of the indexes for ranking self-heating tendency of coal based on the conventional crossing point temperature technique[J]. Journal of China Coal Society, 2015, 40(2):377-382.
|
[17] |
PILAWA B, WIECKOWSKI A B, TRZEBICKA B. Numerical analysis of EPR spectra of coal, macerals and extraction products[J]. Radiation Physics and Chemistry, 1995, 45(6):899-908.
|
[18] |
FENG K K, CHAKRAVO R N, COCHRANE T S. Spontaneous combustion-coal mining hazard[J]. CIM Bulletin, 1973, 66(738):75-84.
|
[19] |
位爱竹. 煤炭自燃自由基反应机理的实验研究[D]. 徐州:中国矿业大学, 2008. WEI A Z. Experimental study on free radical reaction mechanism of coal spontaneous combustion[D]. Xuzhou:China University of Mining & Technology, 2008.
|
[20] |
张锦萍, 李冬, 张成, 等. 低温热提质褐煤的理化结构演化及燃烧特性[J]. 煤炭学报, 2015, 40(3):671-677. ZHANG J P, LI D, ZHANG C, et al. Physical/chemical structure evolution and combustion characteristics of mild thermally upgraded lignite[J]. Journal of China Coal Society, 2015, 40(3):671-677.
|
[21] |
朱诚身. 聚合物结构分析[M]. 2版. 北京:科学出版社, 2010:135-142. ZHU C S. Polymer Structure Analysis[M]. 2nd ed. Beijing:Science Press, 2010:135-142.
|
[22] |
FOELER T G, BARTLE K D, KANDIYOTI R. Limitations of electron spin resonance spectroscopy in assessing the role of free radicals in the thermal reactions of coal[J]. Energy & Fuels, 1989, 3(4):515-522.
|
[23] |
PILAWA B, PUSZ S, KRZESINSKA M, et al. Application of electron paramagnetic resonance spectroscopy to examination of carbonized coal blends[J]. International Journal of Coal Geology, 2009, 77(3):372-376.
|
[24] |
PETRAKIS L, GRANDY D W, RUBERTO R G. Free radicals in coal and coal conversions(5):Methodology for the in-situ investigation of free radicals in coal depolymerization under SRC-Ⅱ preheater/reactor conditions[J]. Fuel, 1981, 60(11):1013-1016.
|
[25] |
吴爱坪. 煤及其热解产物中自由基的分析[D]. 上海:华东理工大学, 2012. WU A P. Research on the free radicals in the coal and pyrolysis products[D]. Shanghai:East China University of Science and Technology, 2012.
|
[26] |
WANG W, MA Y, LI S, et al. Effect of temperature on the EPR properties of oil shale pyrolysates[J]. Energy & Fuels, 2016, 30(2):830-834.
|
[27] |
HE W, LIU Z, LIU Q, et al. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals[J]. Fuel, 2014, 134:375-380.
|
[28] |
SAURABH B, PRADEEP K. The effect of moisture condensation on the spontaneous combustibility of coal[J]. Fuel, 1996, 75(13):1523-1532.
|
[29] |
戴广龙. 煤低温氧化及自燃特性的综合实验研究[D]. 徐州:中国矿业大学, 2005. DAI G L. Comprehensive experimental study on coal low-temperature oxidation and spontaneous combustion property[D]. Xuzhou:China University of Mining & Technology, 2005.
|