[1] |
HAN J, WANG X, YUE J, et al. Catalytic upgrading of coal pyrolysis tar over char-based catalysts[J]. Fuel Processing Technology, 2014, 122:98-106.
|
[2] |
ZHOU Q, TAO Z, MEI Z, et al. Lignite upgrading by multi-stage fluidized bed pyrolysis[J]. Fuel Processing Technology, 2013, 116:35-43.
|
[3] |
刘丽华, 初茉, 党彤彤, 等. 热提质褐煤预氧化后自燃特性变化及其自由基原位分析[J]. 化工学报, 2017, 68(10):3967-3977. LIU L H, CHU M, DANG T T, et al. Free radical in situ analysis and change of spontaneous combustion characteristics after pre-oxidation for thermal upgraded lignite[J]. CIESC Journal, 2017, 68(10):3967-3977.
|
[4] |
初茉, 高晶晶. 褐煤低温热解提质试验研究[J]. 煤炭科学技术, 2012, 40(10):95-99. CHU M, GAO J J. Experiment study on low temperature pyrolysis upgrading of lignite[J]. Coal Science and Technology, 2012, 40(10):95-99.
|
[5] |
李初福, 门卓武, 翁力, 等. 固体热载体回转窑煤热解工艺模拟与分析[J]. 煤炭学报, 2015, 40(S1):203-207. LI C F, MEN Z W, WEN L, et al. Process simulation and analysis for coal pyrolysis with rotary kiln using solid heat carrier[J]. Journal of China Coal Society, 2015, 40(S1):203-207.
|
[6] |
王凯, 陈士超, 尤立. 大型煤炭干馏回转窑换热装置的研制[J]. 矿山机械, 2017, (6):71-74. WANG K, CHEN S C, YOU L, et al. Development of heat exchanger for large coal carbonization rotary kiln[J]. Mining and Processing Equipment, 2017, (6):71-74.
|
[7] |
WANG X G, ZHANG Y, DONG L, et al. Experimental study on the pyrolysis of Shenhua coal to produce hydrogen[J]. Journal of Thermal Science, 2013, 22:184-189.
|
[8] |
ZHANG Y M, WANG Y, CAI L G, et al. Dual bed pyrolysis gasification of coal:process analysis and pilot test[J]. Fuel Processing Technology, 2013, 112:624-634.
|
[9] |
李青松. 褐煤化工技术[M]. 北京:化学工业出版社, 2014:100-140. LI Q S. Lignite Chemical Processes[M]. Beijing:Chemical Industry Press, 2014:100-140.
|
[10] |
曲洋, 初茉, 丁力, 等. 热提质过程中褐煤的碎裂特性[J]. 中国矿业大学学报, 2014, 43(3):508-513. QU Y, CHU M, DING L, et al. Fragmentation characteristic of lignite during heat upgrading[J]. Journal of China University of Mining & Technology, 2014, 43(3):508-513.
|
[11] |
曲洋, 初茉, 郝成亮, 等. 褐煤热碎性对提质工艺的影响分析[J]. 煤炭工程, 2015, 47(12):118-120. QU Y, CHU M, HAO C L, et al. Analysis for the impact of lignite heat fragmentation characteristic on upgrading process[J]. Coal Engineering, 2015, 47(12):118-120.
|
[12] |
CUI H, YANG J L, LIU Z Y, et al. Characteristics of residues from thermal and catalytic coal hydroliquefaction[J]. Fuel, 2003, 82:1549-1556.
|
[13] |
LI J, YANG J L, LIU Z Y. Hydrogenation of heavy liquids from a direct coal liquefaction residue for improved oil yield[J]. Fuel Processing Technology, 2009, 90:490-495.
|
[14] |
李建广, 房倚天, 张永奇, 等. 煤直接液化残渣快速热解半焦特性的研究[J]. 燃料化学学报, 2008, 36(3):273-278. LI J G, FANG Y T, ZHANG Y Q, et al. Property of char from fast pyrolysis direct coal liquefaction residue[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3):273-278.
|
[15] |
孙任晖, 高鹏, 芦海云, 等. 神东煤与煤液化残渣混合样及共热解半焦黏结性研究[J]. 煤炭工程, 2015, 47(11):129-132. SUN R H, GAO P, LU H Y, et al. Caking property of Shendong coal and direct coal liquefaction residue mixture and its pyrolysis semi-coke[J]. Coal Engineering, 2015, 47(11):129-132.
|
[16] |
新日本制铁株式会社. 一种高炉焦炭的制作方法:JPH04309594A[P]. 1992-11-02. Nippon Steel Corporation. A method of making blast furnace coke:JPH04309594A[P]. 1992-11-02.
|
[17] |
XU B, SUN R H, CHU M, et al. Synergies in co-pyrolysis of lignite and coal liquefaction residue[C]//30th Annual International Pittsburgh Coal Conference, 2013:2599-2616.
|
[18] |
LI X H, XUE Y L, FENG J, et al. Co-pyrolysis of lignite and Shendong coal direct liquefaction residue[J]. Fuel, 2015, 144:342-348.
|
[19] |
李晓红, 马江山, 薛艳利, 等. 褐煤与煤直接液化残渣共热解产物半焦性能研究[J]. 燃料化学学报, 2015, 43(11):1281-1286. LI X H, MA J S, XUE Y L, et al. Properties of semi-coke from co-pyrolysis of lignite and direct liquefaction residue of Shendong coal[J]. Journal of Fuel Chemistry and Technology, 2015, 43(11):1281-1286.
|
[20] |
畅志兵, 初茉, 孙任晖, 等. 煤直接液化残渣与褐煤共热解动力学研究[J]. 煤炭科学技术, 2015, 43(3):138-141. CHANG Z B, CHU M, SUN R H, et al. Study on co-pyrolysis kinetics of coal direct liquefaction residue and lignite[J]. Coal Science and Technology, 2015, 43(3):138-141.
|
[21] |
刘文郁. 煤直接液化残渣热解特性研究[D]. 北京:煤炭科学研究总院, 2005:55-62. LIU W Y. Pyrolysis of direct coal liquefaction residue[D]. Beijing:China Coal Research Institute, 2005:55-62.
|
[22] |
李丽丽. 神东煤直接液化残渣与煤共热解相互作用研究[D]. 太原:太原理工大学, 2016:20-29. LI L L. Interaction study on co-pyrolysis between Shendong coal direct liquefaction residue and coal[D]. Taiyuan:Taiyuan University of Technology, 2016:20-29.
|
[23] |
曲洋, 初茉, 申国栋, 等. 回转窑提质过程宝日褐煤热碎性工艺因素分析[J]. 中国矿业大学学报, 2016, 45(2):386-392. QU Y, CHU M, SHEN G D, et al. Analysis of factors affecting Baori lignite heat fragmentation during upgrading in rotary kiln[J]. Journal of China University of Mining & Technology, 2016, 45(2):386-392.
|
[24] |
QU Y, CHU M, SHEN G D, et al. Inhibitory effect of coal direct liquefaction residue on lignite pulverization during co-pyrolysis[J]. Fuel Processing Technology, 2016, 147:57-63.
|
[25] |
WANG C Y, HAO S X, SUN W J, et al. Fractal dimension of coal particles and their CH4 adsorption[J]. International Journal of Mining Science and Technology, 2012, 22:855-858.
|
[26] |
YI Z, CHENG F J, WEI C. Methane adsorption behavior on coal having different pore structures[J]. International Journal of Mining Science and Technology, 2012, 22:757-761.
|
[27] |
ARNTZ M M H D, OTTER W K, BRIELS W J, et al. Granular mixing and segregation in a horizontal rotating drum:a simulation study on the impact of rotational speed and fill level[J]. AIChE Journal, 2008, 54(12):3133-3146.
|
[28] |
LEE S H, KIM S D, LEE D H, et al. Particle size reduction of anthracite coals during devolatilization in a thermobalance reactor[J]. Fuel, 2002, 81:1633-1638.
|
[29] |
曲洋, 初茉, 张超, 等. 热作用过程油页岩颗粒的碎裂/粉化特性[J]. 化工学报, 2017, 68(10):3934-3942. QU Y, CHU M, ZHANG C, et al. Characteristics of oil shale particles fragmentation/pulverization during thermal effect[J]. CIESC Journal, 2017, 68(10):3934-3942.
|
[30] |
刘思峰, 蔡华, 杨英杰, 等. 灰色关联分析研究进展[J]. 系统工程理论与实践, 2013, 33(8):2041-2044. LIU S F, CAI H, YANG Y J, et al. Advance in grey incidence analysis modelling[J]. Systems Engineering-Theory&Practice, 2013, 33(8):2041-2044.
|